• Title/Summary/Keyword: 고온 크리프 특성

Search Result 56, Processing Time 0.029 seconds

The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material (보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響)

  • 오세욱;박인석;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 1989
  • In order to investigate the effects of hot corrosion on the creep rupture properties and creep life of 304 stainless steel being used as tube materials of heavy oil fired boiler, the creep rupture tests were carried out at temperature 630.deg.C, 690.deg.C and 750.deg.C in static air for the specimens with or without coating of double layer corrosives according to the new hot corrosion test method simulating the situation commonly observed on superheater tubes of the actual boiler. The double layer corrosives are 85% V$_{2}$O$_{5}$ + 10% Na$_{2}$So$_{4}$ + 5% Fe$_{2}$O$_{3}$ as the inner layer corrosive being once melted at 900.deg. C and crushed to powder, and 10% V$_{2}$O$_{5}$ + 85% Na$_{2}$SO$_{4}$ +5% Fe$_{2}$O$_{3}$ as the outer layer corrosive. As results, in the specimen coated with the double layer corrosives, the rupture strength was extremely lowered and showed a large difference each other. The rupture ductility also lowered remarkably as a result of the brittle fracture mode due to hot corrosion. These results indicate that hot corrosion could essentially alter the creep fracture mechanism. From the metallographic observation, it was clarified that the rupture life of 304 stainless steel subjected to hot corrosion was chiefly determined by the behavior of the aggressive intergranular penetration of sulfides.des.

Creep Damage Evaluation of Cr-Mo Steel High-Temperature Pipeline Material for Fossil Power Plant Using Ultrasonic Test Method (초음파법을 이용한 Cr-Mo강 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.18-26
    • /
    • 2000
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques(replica method, electric resistance method, and hardness test method) for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens(Cr-Mo alloy steels) were carried out for the purpose of evaluation for creep damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens. we conformed that both the sound velocity decreased and attenuation coefficient linearly increased in proportion to the Increase of creep life fraction($\Phi$c).

  • PDF

SP Creep Degradation of Anisotropic Materials by the Hydride (수소화물에 의한 이방성재료의 소형펀치(SP) 크리프 열화거동)

  • Oh, Dong-Joon
    • 대한공업교육학회지
    • /
    • v.35 no.2
    • /
    • pp.204-223
    • /
    • 2010
  • The purpose of this study was to investigate the high temperature creep behavior of anisotropic Zr-2.4%Nb alloy which includes the hydride. To minimize the effect of the anisotropy and to achieve the bi-axial stress condition, SP creep test was performed using the Zr alloys which have the 50 ppm, 100 ppm and 200 ppm hydride. Each SP creep curve was obtained and compared. While the creep degradation of 50 ppm and 100 ppm hydride specimens was clearly found, the degradation of 200 ppm was not cleared. By the comparison of SP creep constant and stree exponent, this fact was confirmed. As the degradation of 50 ppm and 100 ppm hydride was processed, the SP creep constant was decreased and the stress exponet was increased. However, while the SP creep constant of 200 ppm hydride was decreased, the stree exponent was decreased. Finally, it was confirmed that the creep degradation of 200 ppm was not found. In conclusion, the hydride was the major parameter to control the hight temperature creep degradation of Zr alloy.

  • PDF

Temperature Dependent Creep Properties of Directionally Solidified Ni-based Superlloy CM247LC (일방향 응고 니켈기 초내열 합금 CM247LC의 온도에 따른 크리프 특성)

  • Choi, Baig-Gyu;Do, Jeonghyeon;Jung, Joong Eun;Seok, Woo-Young;Lee, Yu-Hwa;Kim, In Soo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.505-515
    • /
    • 2021
  • Creep properties of directionally solidified Ni-based superalloy CM247LC under various temperature and stress conditions have been investigated. In the heat-treated specimen, some portion of eutectic γ-γ' remained, and uniform cubic γ' was observed in the dendrites. At low temperature (750℃) and high stress condition, a large amount of deformation occurred during the primary creep, while the tertiary creep region accounted for most of the creep deformation under high temperature and low stress condition. γ' particles are sheared by dislocation dissociated into super lattice partial dislocations separated by stacking faults at 750℃. No stacking faults in γ' were found at and above 850℃ due to the temperature dependence of the stacking fault energy. Raft structure of γ' was found after creep test at high temperature of 950℃ and 1000℃. At 850℃, the deformation mechanism was shown to be dependent on the stress condition, and so rafting was observed only under low stress condition.

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Frequency Spectrum Analysis Method (주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk;Lee, In-Cheol;Chang, Hong-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.10-17
    • /
    • 2000
  • In boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants, conventional measurement techniques(replica method, electric resistance method, and hardness test method) for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also, these techniques have low practicality and applied only to component surfaces with good accessibility. It needs to apply a reliable and quantitative ultrasonic nondestructive evaluation method that can be replaced for these equipment. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for crept specimens were carried out for the purpose of nondestructive evaluation for creep damage. As a result of ultrasonic tests for crept specimens, we conformed that the high frequency side spectra decrease and central frequency components shift to low frequency band, and also their bandwidth decreases as increasing creep damage in backwall echos.

  • PDF

Creep Behavior of High-Strength Concrete with Nylon Fibers at Elevated Temperatures (고온을 받은 나일론 섬유 보강 고강도 콘크리트의 크리프 거동)

  • Kim, Young-Sun;Lee, Tae-Gyu;Kim, Woo-Jae;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.627-636
    • /
    • 2011
  • Recently, to prevent explosive spalling of high-strength concrete (HSC) members, the usage of nylon fiber instead of polypropylene fiber has increased. Past experimental studies have been conducted to examine the spalling and mechanical properties of HSC with nylon fibers when exposed to elevated temperature. However, the previous studies on HSC with nylon fibers subjected to high temperatures were performed only on the properties such as spalling, compressive strength, and elastic modulus rather than investigations on to the behaviors such as thermal strain, total strain, steady state creep, and transient creep. Therefore, in this study thermal strain, total strain, steady state creep, and transient creep of HSC mixed with nylon fibers with water to binder ratio of 0.30 to 0.15 were tested. The experimental results showed that nylon fibers did not affect the performance of HSC with nylon fibers at high temperatures. However, HSC with nylon fibers generated a larger transient creep strain than that of HSC without fibers and normal strength concrete.

The Creep Properties of Pb-free Sn-3.5Ag-$\chi$Cu Solder Alloys (Sn-3.5Ag-xCu무연 솔더의 크리프 성질 연구)

  • Joo, Dae-Kwon;Yu, Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.141-145
    • /
    • 2001
  • Sn-3.5Ag 무연 솔더에 Cu를 첨가한 3원계 합금을 만든 후 압연과 열처리한 후 크리프 특성을 연구하였다. 모든 솔더 합금에서 1차 크리프는 거의 관찰되지 않았으며, 2차와 3차 크리프가 대부분을 차지하였고, 최소 크리프 변형율은 Cu 함량이 0.75 wt %에서 최소이었고, 응력 지수는 약 4이었으며, 파단 시간 또한 0.75 wt% Cu에서 가장 길었다. 크리프 기구는 격자 확산에 의한 전위의 상승과 전위 활주에 의한 고온 크리프임을 앞 수 있었으며, Cu의 첨가는 1 wt% 가지 연성에 큰 영향을 주지 않았으나, 1.5 wt% 첨가했을 경우 연성은 크게 감소하였다.

  • PDF

A Study on Evaluation of High Temperature Creep Properties of 9Cr1MoVNb Steel by Small Punch-Creep test (소형펀치-크리프 시험에 의한 9Cr1MoVNb강의 고온 크리프 특성 평가 연구)

  • Yu, Hyo-Sun;Na, Sung-Hoon;Baek, Seung-Se;Kwon, Il-Hyun;Ahn, Byung-Guk;Na, Eui-Gyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.99-104
    • /
    • 2000
  • This paper describes the high temperature creep characteristics for virgin material of 9Cr1MoVNb steel using small punch creep(SP-Creep) test technique which is developing recently. In addition, the several results of SP-Creep test are compared with that of 2.25Cr- 1Mo steel which is widely used as boiler materials and that of conventional uniaxial creep test. The obtained SP-Creep curves show the creep behaviors of three regimes like that obtained from conventional uniaxial creep test, and SP-Creep properties are definitely depended on applied load and test temperature. The correlation of SP-Creep rate and creep rupture life with applied load has been determined like the correlation between creep rate/rupture life and stress in uniaxial creep test, and also is satisfied with Power law. The creep rupture times of newly 9Cr1MoVNb steel are higher than those of 2.25Cr1Mo steel at the same creep temperature and applied loading condition, and the decrease extent of creep rupture life with loads is very lower compared with 2.25Cr1Mo steel.

  • PDF