• Title/Summary/Keyword: 고온 설계평가

Search Result 184, Processing Time 0.029 seconds

A study on thermal and mechanical properties according to the structures of conductor sleeve and the method of connection for EHV Cables (전력 케이블용 접속 슬리브의 구조 및 접속 방법에 따른 특성 연구)

  • Kim, Young-Bum;Han, Bong-Soo;Ryu, Jeong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1493_1494
    • /
    • 2009
  • 초고압 전력 케이블용 도체 접속을 위한 접속방법으로 압축형(compressing type), 용접형(welding type), 압축-용접형(CW type; compressing-welding type)의 슬리브는 물론 동과 알루미늄의 이종(nonidentical materials) 접속을 위한 슬리브를 개발 하였으며, 전기적, 기계적으로 검증된 제품 개발을 위하여, 슬리브의 구조 변경과 접속 방법의 차이뿐 아니라 접속 전후의 응력 평가를 위해 슬리브 시편의 인장시험(tensile strength) 결과에 따른 슬리브 제작 및 시험을 진행하였다. 신뢰성 있는 제품 개발과 데이터를 얻기 위하여 초고압용 지중 고압 케이블을 시험 시료로 적용하여 시험 선로(test loop)를 구성하였으며, 이를 통하여 구조와 재질에 따른 접속 방법, 이상 온도 상승 또는 국부적인 고온 부위 발생 여부 등의 전기 시험 및 열싸이클 전압 시험(heating cycle voltage test) 조건을 설정하여 시험 전후의 열신축 등 전기적, 기계적 특성을 평가하였다. 접속 슬리브의 구조 및 재질에 따른 위치별 발열 양상을 체크하였으며, X-ray 장비를 이용하여 슬리브 내부의 압축 및 충진 정도를 점검함으로써 기존 접속 슬리브 보완은 물론 개발된 접속 슬리브의 설계 기준 및 안전율을 설정 할 수 있었다.

  • PDF

Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film (다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2019
  • The demand for smaller, faster, and multi-functional mobile devices in increasing at a rapidly increasing rate. In response to these trends, Stacked Chip Scale Package (SCSP) is used widely in the assembly industry. A film type adhesive called die attach film (DAF) is used widely for bonding chips in SCSP. The DAF requires high flowability at high die attachment temperatures for bonding chips on organic substrates, where the DAF needs to feel the gap depth, or for bonding the same sized dies, where the DAF needs to penetrate bonding wires. In this study, the mixture design of experiment (DOE) was performed for three raw materials to obtain the optimized DAF recipe for low elastic modulus at high temperature. Three components are acrylic polymer (SG-P3) and two solid epoxy resins (YD011 and YDCN500-1P) with different softening points. According to the DOE results, the elastic modulus at high temperature was influenced greatly by SG-P3. The elastic modulus at $100^{\circ}C$ decreased from 1.0 MPa to 0.2 MPa as the amount of SG-P3 was decreased by 20%. In contrast, the elastic modulus at room temperature was dominated by YD011, an epoxy with a higher softening point. The optimized DAF recipe showed approximately 98.4% pickup performance when a UV dicing tape was used. A DAF crack that occurred in curing was effectively suppressed through optimization of the cure accelerator amount and two-step cure schedule. The imizadole type accelerator showed better performance than the amine type accelerator.

Design and Performance Evaluation of Integral-type Hot BoP for Recovering High-temperature Exhaust Gas in 2 kW Class SOFC (2 kW급 고체산화물연료전지의 고온배기가스 폐열회수를 위한 일체형 Hot BoP의 설계 및 성능 평가)

  • Kim, Young Bae;Kim, Eun Ju;Yoon, Jonghyuk;Song, Hyoungwoon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2019
  • This study was focused on the design and the performance analysis of integral Hot BoP for recovering waste heat from high-temperature exhaust gas in 2 kW class solid oxide fuel cell (SOFC). The hot BoP system was consisted of a catalytic combustor, air preheater and steam generator for burning the stack exhaust gas and for recovering waste heat. In the design of the system, the maximum possible heat transfer was calculated to analyze the heat distribution processes. The detail design of the air preheater and steam generator was carried out by solving the heat transfer equation. The hot BoP was fabricated as a single unit to reduce the heat loss. The simulated stack exhaust gas which considered SOFC operation was used to the performance test. In the hot BoP performance test, the heat transfer rate and system efficiency were measured under various heat loads. The combustibility with the equivalent ratio was analyzed by measuring CO emission of the exhaust gas. As a result, the thermal efficiency of the hot BoP was about 60% based on the standard heat load of 2 kW SOFC. CO emission of the exhaust gas rapidly decreased at an equivalent ratio of 0.25 or more.

Macroscopic High-Temperature Structural Analysis Model for a Small-Scale PCHE Prototype (I) (소형 PCHE 에 대한 거시적 고온 구조 해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Sung-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1499-1506
    • /
    • 2011
  • The IHX (intermediate heat exchanger) is a key component of nuclear hydrogen systems for the production of massive amounts hydrogen. The IHX transfers the $950^{\circ}C$ heat generated by the VHTR (very high temperature reactor) to a hydrogen production plant. The Korea Atomic Energy Research Institute established a small-scale gas loop to test the performance of key VHTR components and manufactured a small-scale PCHE (printed circuit heat exchanger) prototype, which is being considered as a candidate for the IHX, for testing in the small-scale gas loop. In this study, as a part of the high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and structural analysis for the small-scale PCHE prototype under the small-scale gas loop test conditions. This analysis serves as a precedent study to scheduled PCHE performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE and then used to design the medium-scale PCHE prototype.

Effect of Die Attach Film Composition for 1 Step Cure Characteristics and Thermomechanical Properties (다이접착필름의 조성물이 1단계 경화특성과 열기계적 물성에 미치는 영향에 관한 연구)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.261-267
    • /
    • 2020
  • The demand for faster, lighter, and thinner portable electronic devices has brought about a change in semiconductor packaging technology. In response, a stacked chip-scale package(SCSP) is used widely in the assembly industry. One of the key materials for SCSP is a die-attach film (DAF). Excellent flowability is needed for DAF for successful die attachment without voids. For DAF with high flowability, two-step curing is often required to reduce a cure crack, but one-step curing is needed to reduce the processing time. In this study, DAF composition was categorized into three groups: cure (epoxy resins), soft (rubbers), hard (phenoxy resin, silica) component. The effect of the composition on a cure crack was examined when one-step curing was applied. The die-attach void and flowability were also assessed. The cure crack decreased as the amount of hard components decreased. Die-attach voids also decreased as the amount of hard components decreased. Moreover, the decrease in cure component became important when the amount of hard component was small. The flowability was evaluated using high-temperature storage modulus and bleed-out. A decrease in the amount of hard components was critical for the low storage modulus at 100℃. An increase in cure component and a decrease in hard component were important for the high bleed-out at 120℃(BL-120).

Fire Resistance of Concrete-Filled Circular Steel Tube Columns under Central Axial Loads (일정 축력을 받는 콘크리트충전 원형 강관기둥의 내화성능 평가)

  • Park, Su Hee;Song, Kyung Chul;Ryoo, Jae Yong;Chung, Kyung Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.655-663
    • /
    • 2008
  • In this research, the fire resistance of Concrete-Filled Circular Steel Tube Columns (CFT) was evaluated by numerical analysis. As the materials of CFT columns, the steel of SPSR 400 grade and the concrete of 27.5MPa, 37.8MPa strengths were used. Significant parameters,such as concrete strength, axial load, and cross-sectional dimensions were determined. To verify the accuracy of the numerical analysis,the analysis results were compared with the former experiment results. The effect of the fire resistance time, axial load ratio, cross-sectional dimensions and concrete strength was evaluated by comparison with the fire resistance of the square CFT columns. This research showed that the structural behavior and fire resistance from the findings of numerical parametric studies showed a similarity to that of the experimental results. Therefore, this numerical analysis is reasonable in estimating the fire resistance of the circular CFT column.

A Study on the Applicability of CNT/Aluminum Nanocomposites to Automotive Parts (CNT강화 알루미늄 나노복합재의 자동차용 부품 적용성 연구)

  • Min, Byung Ho;Nam, Dong Hoon;Park, Hoon Mo;Lee, Kyung Moon;Lee, Jong Kook
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2015
  • Various characteristics(thermal expansion, microstructure, etc.) and mechanical properties of CNT-aluminum nano composites manufactured by volume production system were evaluated. Also, formability and durability were evaluated for potential applications in automotive parts, via compared with high-elasticity material (A390) and the current commercial product. As a result, this composite has excellent mechanical properties and formability, therefore, to verity its potential for application as light and high strength materials in automobile part.

Guidelines for Designing the Shape and Layout of Thermal Energy Storage (TES) Rock Caverns (열에너지 저장 암반공동의 형상 및 레이아웃 설계 가이드라인)

  • Park, Dohyun;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • Thermal energy storage (TES) is a technology that stores surplus thermal energy at high or low temperatures for later use when the customer needs it, not just when it is available. TES systems can help balance energy demand and supply and thus improve the overall efficiency of energy systems. Furthermore, the conversion and storage of intermittent renewable resources in the form of thermal energy can help increase the share of renewable resources in the energy mix which refers to the distribution of energy consumption from different sources, and to achieve this, it is essential to combine renewable resources with TES systems. Underground TES using rock caverns, known as cavern thermal energy storage (CTES), is a viable option for large-scale, long-term TES utilization although its applications are limited because of the high construction costs. Furthermore, the heat loss in CTES can significantly be reduced due to the heating of the surrounding rock occurred during long-term TES, which is a distinctive advantage over aboveground TES, in which the heat loss to the surroundings is significantly influenced by climate conditions. In this paper, we introduced important factors that should be considered in the shape and multiple layout design of TES caverns, and proposed guidelines for storage space design.

A Study on the Structural Integrity Considering the Installation of a Micro-tube Heat Exchanger (미세튜브 열교환기의 장착을 고려한 구조건전성에 관한 연구)

  • Oh, Se Yun;Kim, Tae Jin;Cho, Jong Rae;Jeong, Ho Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.447-451
    • /
    • 2015
  • The objective of this study is to predict the structural characteristics of a heat exchanger mounted on an aircraft engine using finite element analysis. The plastic fracture and life of the heat exchanger were estimated by a thermo-mechanical analysis. Tensile tests were conducted under high temperature conditions (700, 800, 900, 1000 K) using five specimens to obtain the mechanical properties of the Inconel 625 tubes. To assess the structural characteristics of the heat exchanger, the full and partial models were applied under the operating conditions given by the thermo-mechanical and inertial load. As a result, the case, tubesheet, flange, and mounting components have a reasonable safety margin to the allowable stress assuming a fatigue strength of Inconel 625 of 10000 cycles under 1000 K.

A method on integrity evaluation with high reliability for superheater structure in a supercritical thermal power plant (초임계압 화력 과열기 구조의 고신뢰도 건전성 평가 방법)

  • Lee, Hyeong-Yeon;Ju, Yong-Sun;Choi, Hyun-Sun;Won, Min-Gu;Huh, Nam-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • Integrity evaluations on a platen superheater were conducted as per ASME Section VIII Division 2(hereafter 'ASME VIII(2)') which was originally used for design with implicit consideration of creep effects. A platen superheater subjected to severe loading conditions of high pressure and high temperature at creep regime in a supercritical thermal plant in Korea was chosen for present study. Additional evaluations were conducted as per nuclear-grade high-temperature design rule of RCC-MRx that takes creep effects into account explicitly. Comparisons of the two results from ASME VIII(2) and RCC-MRx were conducted to quantify the conservatism of ASME VIII(2). From present analyses, it was shown that the design evaluation results exceeded allowable limits of RCC-MRx for the plant design conditions although limits of ASME VIII(2) were satisfied regardless of operation time, which means that design as per ASME VIII(2) might be potentially non-conservative in case of operation in creep range. A high-temperature design evaluation program as per RCC-MRx, called 'HITEP_RCC-MRx' has been used and it was shown that pressure boundary components can be designed reliably with the program especially for the loading conditions of long-term creep conditions.