• Title/Summary/Keyword: 고온 냉방

Search Result 70, Processing Time 0.024 seconds

Optimum Management of Greenhouse Environment by the Shading Coat and Two-fluid Fogging System in Summer Season (차광제와 이류체 포그시스템을 이용한 고온기 시설내 환경관리)

  • Kim, Sung Eun;Lee, Jae Eun;Lee, Sang Don;Kim, Hak Sun;Chun, Hee;Jeong, Woo Ri;Lee, Moon Haeng;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.34-38
    • /
    • 2015
  • This research was conducted to establish efficient methods to overcome high temperature and low humidity with light selective shading agent and two-fluid fogging system in greenhouses in hot season. There were four experimental treatments; not treated (Non), fogging by two-fluid fogging system (Fog), spraying onto the greenhouse surface with shading coating agent (Coat), and using fogging and coating together (F&C). The amount of solar radiation entered into the greenhouses was higher in Non, and then Fog, Coat, and F&C in descending order. Fog was more efficient to lower the air temperature and also raise relative humidity than Coat treatment. The crop temperature was about $6^{\circ}C$ higher in Control than the other treatments. F&C revealed as the most efficient method to control the environment inside the greenhouse, but fogging system seemed to be more economic. In stand-alone greenhouses spraying coating agent may be the appropriate choice because of their structural limitations, mainly eave height.

Performance of the Geothermal Heat Pump using Vapor Injection for Hot Water (증기분사를 적용한 고온수용 지열 히트펌프의 성능특성)

  • Park, Yong-Jung;Park, Byung-Duck
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.297-304
    • /
    • 2014
  • The purpose of this study is to evaluate the experimental performance characteristics of a water-to-water geothermal heat pump featuring a vapor refrigerant injection for the production of hot water. The performance of geothermal heat pump with a vapor injection was evaluated by comparing with that of a conventional geothermal heat pump without a vapor injection. For heating operation, the geothermal heat pump with a vapor injection is superior in COP and heating capacity. The vapor injection was more effective for supplying hot water while overloading. The vapor injection was effective for the improvement of the cooling capacity. However, the vapor injection was not effective for the increasing of COP according to the increased input of a compressor. The advantage of vapor injection in water-to-water geothermal heat pump become disappeared while cooling operation with lower part loading.

Recent Developments in High-Flux Heat Transfer Tubes (最近의 高性能傳熱管의 開發)

  • 서정윤
    • Journal of the KSME
    • /
    • v.18 no.3
    • /
    • pp.18-24
    • /
    • 1978
  • 열고환기에는 boiler와 같이 다량의 열 energy를 취급하는 것을 비롯하여 가정용 냉장고, 냉방기 기와 같이 비교적 적은 양의 열 energy를 취급하는것, 가종 고온 gas-gas 열교환기, 초전도송전 등의 초저온기기에 부속되는 저온열교환기 혹은 배열회수, 태양열이용을 위한 장치에 포함되는 열교환기등이 있으며, 그 종류와 내용에 있어서 다양하다. 따라서 새 형식의 열교환기 혹은 우수 한 전열특성을 갖는 표면, 형상을 갖는 전열관의 연구, 개발은 한층더 절실하게 요망된다. 최근주 목을 받고 있는 열교환기용전열관중에는 관축방향을 따라 표면을 파상으로 가공한 것(corrugate 식)과 축과 평형이 되게 만든 좁은 흠을 갖는 관(fluted tube)등이 있는데 이들에 있어서는 다같 이 표면의 요철에 의한 면부근의 난동을 촉진시켜서 우수한 대류열전달의 특성을 갖도록 하고 있다. 한편 응축과 비등등의 상변화를 동반하는 열전달에 대해서는 세구, 기공질금속층, 세공등을 갖는 면에 관해서 새로운 관심이 집중되고 있다. 이 후자의 전열면은 유축열전달에서는 평활면보 다 약10배의 높은 열전달율을 가지며 불등열전달에서는 벽면과 액의 온도차는 평활면의 경우보다 약1/5의 값을 갖는다. 동시에 한계열유속은 5활이상으로 증가시킬 수 있음이 알려져 있다. 따라서 본론에서는 후자의 전열면중에서 최근에 알려진 비약적으로 높은 전열성능을 갖는 전열면에 관해 서 소개하기로 한다.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

전기유동유체(ERF)를 이용한 지능구조물 시스템의 구성 및 응용

  • 최승복;박용군
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.275-283
    • /
    • 1995
  • 본 글에서는 지능구조물의 개념설명과 더불어 ERF의 특성, ERF를 함유란 함유 한 지능구조물 시스템의 구성, 동적 모델링과 진동제어 그리고 그 응용성에 관한 연구 현황과 방향에 대해 살펴보았다. 설명한 바와 같이 지능구조물은 새로운 차원의 신생 하는 첨단분야로서, 소음 및 진동에 관련된 무한한 잠재력과 다양한 응용성으로 미루 어 볼때 아주 매력적인 연구 분야이다. 그러나, 여러 응용 시스템의 상품화 단계로의 도약에 있어서 각 시스템 구성 요소 분야별 해결해야할 연구 사항들이 있다. 먼저, 액추에이팅을 수행하는 ERF 자체의 내구성 문제로서 고온에서 ERF의 효과 하락과 장시간 사용시 ERF에 의한 마멸, 고체 입자의 침전에 의한 초기 상태 불안정 등이 있다. 아울러 기존의 장치의 성능을 능가하기 위해 보다 큰 효과를 나타내는 새로운 차원의 ERF개발이 요구된다. 그리고 센서기술 분야에서는 호스트 재료에 보다 쉽게 결합이 되고 여러가지 형태의 요구조건을 만족시킬 수 있으며 외부 환경조건에 강건 하고 다양한 센서 개발이 요구된다. 또한, 보다 일번적인 동적 모델링을 통해 적용 시스템에 적합하고 강건한 제어기에 대한 연구가 진행되어야 한다. 마지막으로 능동 제어기를 실제로 구현하기 위한 호스트 재료 각 요소마다 센서의 설치, 페회로 피드백 시스템 장착, 상호간의 인터페이스 등의 기술 발전이 요구되며, 아울러 보다 효율적 인 시스템의 성능 특성을 실현할 수 있는 호스트 재료와 기계 메카니즘이 필요로 된다. 이상의 설명에서 알 수 있듯이 지능구조물에 대한 연구는 어느 한 분야에서만 아니라 기계, 전기전자, 토목, 물리, 재료과학 등 통합형식에 의한 접근 방향으로 추진되어야 할 것이다.서 세탁기의 진동 소음을 저감시키기 위해 진동 소음원에 대해 논술하고, 진동해석을 위해 컴퓨터 시뮬레이션 결과를 이용한 저진동 기술 개발에 대하여 기술하고자 한다.rotary piston)식 압축기는 약 20여년 전 부터 냉방용 압축기에서부터 널리 쓰이게 되었다. 약 10여년전부터 상용화 된 스크롤(scroll) 형 압축기도 현재 상대적으로 용량이 큰 가정용 냉방기를 중심으로 많이 쓰이고 있다. 스크류형 압축기는 보통 중대형 상업용에 주로 쓰인다. 해결하려 하였고, 수치해석은 피스톤의 운동을 배제한 단순화한 흡배기계의 정상상태 유동해석이 주를 이루어왔다. Taghaui and Dupont 등[5]은 KIVA코드를 사용하여 흡기포트와 연소실 그리고 밸브의 움직임을 동시에 고려한 수치해석을 도입하였다. 하지만 이들이 밸브의 운동을 고려하기 위해 사용한 이동격자는 격자점은 시간에 따라 변화하지만 그 격자의 수가 일정하게 유지되어 있어서 밸브의 완전개폐를 해석할 수가 없다. 강희정[6]은 단일 실린더와 단일 배기밸브를 갖는 문제로 단순화하여 피스톤과 밸브의 움직임을 고려하므로써 배기행정 후 소음이 어떻게 전파해 나가는가를 연구하였다. 본 연구에서도 최소밸브간격과 최대밸브간격 사이에서만 계산이 가능하나 흡기의 경우는 밸브가 닫힐 때 생기는 압력파가 중요하므로 실린더와 밸브사이에 벽면조건을 주어 밸브의 개폐를 모사하였다.술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS.

  • PDF

Research on the Performance of Total Heat Exchanger in a Solar Air-Conditioning System (태양열 이용 냉난방 공조시스템 중 전열교환기 성능에 관한 연구)

  • Kim, K.H.;Choi, K.H.;Kum, J.S.;Kim, B.C.;Kim, J.R.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.45-53
    • /
    • 1999
  • This report Introduces a total heat exchanger in a solar air-conditioning system using Lithium Chloride(LiCl) solution. The hot and humid outside air is cooled and dehumidified by LiCl solution that is sprayed on the packed layer of the total heat exchanger. LiCl solution once diluted is concentrated again in a regenerator using solar energy. Three types as the packed materials were used in this experiment and the dehumidification performance was evaluated by the value of $k_xa(kg/h{\cdot}m^3{\cdot}{\Delta}x)$, overall mass transfer coefficient based on a humidity ratio potential difference, the influence of inlet LiCl solution flow rate, air flow rate, packed layer height on $k_xa$ was investigated. It was found that air flow rate, LiCl solution flow rate, packed layer height for all types had a great influnce on the value of $k_xa$.

  • PDF

Characterization of a new variety "Backryeon" developed by crossing in Tricholoma giganteum (왕송이(Tricholoma giganteum) 신품종 '백련'의 특성)

  • Jang, Kab-Yeul;Kong, Won-Sik;Yoo, Young-Bok;Lee, Kang-Hyo;Jhune, Chang-Sung;Lee, Jung-Hoon;Sung, Jae-Mo
    • Journal of Mushroom
    • /
    • v.7 no.4
    • /
    • pp.187-192
    • /
    • 2009
  • Tricholoma giganteum, belongs to Tricholomataceae of Tricholoma, is also well-known as the medicinal mushroom in Taiwan. "Backryon" was the first variety developed by intra-specific crossing in Korea. It was improved with hybridization between monokaryotic strain derived from MKACC50852 and MKACC 50853. The optimum temperature of mycelial growth and fruiting body development were $25{\sim}30^{\circ}C$ and $20{\sim}25^{\circ}C$, respectively. The color of fruitingbody was pure white and cap type was umbrella. It suggested that 'Backryon' was new commercial variety for small-sized cultivator during the summer season.

  • PDF

Effects of Groundwater Cooling Treatment on Growth, Yield, and Quality of Strawberries under High Temperature Conditions (이상 고온 조건에서 지하수 냉방 처리가 딸기의 생육과 수량 및 품질에 미치는 영향)

  • Lee, Gyu-Bin;Lee, Jung-Eun;Choe, Yun-Ui;Park, Young-Hoon;Choi, Young-Whan;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.631-639
    • /
    • 2018
  • A Cultivation method to minimize the damage caused by high temperatures was studied by investigating the effects of groundwater cooling treatment on the growth, yield, and quality of strawberries. In the groundwater cooling treatment, the daily average temperature of the rhizosphere was reduced from $26.9^{\circ}C$ to $24.9^{\circ}C$. The root length increased by 0.3-9.2 cm, depending on the cultivar and growth period. The leaf number, leaf area, leaf length, leaf diameter, and plant height also increased, especially in the cultivars 'Seolhyang' and 'Maehyang', resulting in higher fresh and dry weights. The number of fruit per plant increased from 7.7 to 12.5 in 'Seolhyang', and the fruit weight increased by 0.3 g in 'Seolhyang' and 1.3 g in 'Maehyang'. The fruit hardness increased, but no significant difference in fruit coloration was observed. The sugar content of the fruit was improved by $0.2-0.3^{\circ}Brix$. Therefore, groundwater cooling of the rhizosphere was effective in improving the growth and productivity of strawberries under abnormally high temperature conditions and can be considered a cost-efficient cooling system.

Analysis of Indoor Thermal Environment and Cooling Effects by Ventilation Condition, and Spray irrigation or Nonspray of Single Span Plastic Greenhouses (환기조건 및 관수에 따른 단동 플라스틱 하우스의 냉방효과와 열환경 분석)

  • 허종철;임종환;서효덕;최동호
    • Journal of Bio-Environment Control
    • /
    • v.9 no.1
    • /
    • pp.27-39
    • /
    • 2000
  • In this study, we quantitatively compare the cooling effects of single span plastic greenhouses by opening or shutting of toot and side vents, and operation of fan or sprinkler. With those variables, we simultaneously made experiments at 4 greenhouses under equivalent conditions. By the experiments, the shutting of roof and side vents caused the high temperature difference of indoor and outdoor which the crops cannot be cultivated. However, the opening of the windows effectively reduced the indoor temperature and showed uniform temperature distribution in the greenhouses. The sprinkler abruptly reduced the indoor temperature, and showed excellent cooling effects. Finally, this paper provides the fundamental data for environmental control in greenhouses.

  • PDF

Evaluation of Heating and Cooling Thermal Output Characteristics of Prefabricated Steel Wall Panel System for Radiant Heating and Cooling (강판 마감형 조립식 벽패널 복사냉난방시스템의 냉난방 방열 특성 평가)

  • Lim, Jae-Han;Koo, Bo-Kyoung;Kim, Sung-Im;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • Recently the radiant panel heating and cooling system has been regarded as an alternative of low temperature heating and high temperature cooling by applying the renewable energy sources to the heating and cooling of buildings. Especially this system can be used as HVAC system alternatives in super high-rise buildings for energy saving and thermal comfort. Also it can be possible to reduce the plenum space because the minimum ventilation air will be supplied into the space. This study focused on the evaluation the basic characteristics of thermal output in prefabricated steel wall panel system for radiant heating and cooling. In order to evaluate the thermal output according to both various supply water temperatures and supply water flow rates, three-dimensional dynamic heat transfer analysis was performed. As results, for the heating mode, thermal output increased by 26% with the supply temperature increasing by $5^{\circ}C$. The surface temperature of panels range within $1{\sim}3^{\circ}C$. For the cooling mode, thermal output decreased by 18.2% with the supply temperature increasing by $2^{\circ}C$. The surface temperature of panels range within $0.5{\sim}1^{\circ}C$ and it was shown the even temperature distribution.