• Title/Summary/Keyword: 고온/고압

Search Result 667, Processing Time 0.028 seconds

Review on Membrane Materials to Improve Plasticization Resistance for Gas Separations (가소화 저항 향상을 위한 기체분리막 소재 개발 동향)

  • Jo, Jin Hui;Chi, Won Seok
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.385-394
    • /
    • 2020
  • In the gas separation process, the separation membranes have to not only show high gas transport and selectivity but also exhibit exceptional stability at high temperature and pressure. However, when the polymeric membranes (particularly, glassy polymers) are exposed to the condensable gases (i.e., CO2, H2S, hydrocarbon, etc.), the polymer chains are prone to swell, leading to low stability. As a result, the plasticization behavior reduces the gas selectivity in the separation of mixture gases at high pressures and thus results in limited applications to the separation processes. To address these issues, many strategies have been studied such as thermal treatment, polymer blending, thermally rearrangement, mixed-matrix membranes, cross-linking, etc. In this review, we will understand the plasticization behavior and suggest potential methods based on the previously reported studies.

Development of numerical method to predict broadband radiation noise resulting in fluid-induced vibration and acoustic-induced vibration of pipe (배관의 유동 유발 진동 및 음향 유발 진동 기인 광대역 방사 소음 예측을 위한 수치 해석 기법 개발)

  • Sangheon Lee;Cheolung Cheong;Songjune Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.112-121
    • /
    • 2024
  • The pipping system is widely used in many industries as equipment for transporting fluids over long distances. In high-pressure pipe, as the speed of the fluid increases, a loud noise is generated. Therefore, various studies have been conducted to reduce pipe noise. In this paper, a pipe noise analysis was developed to predict and quantitatively assess the flow-induced vibration and acoustic-induced vibration due to valve flow in high-temperature and high-pressure. To do this, a high-fidelity fluid analysis technique was developed for predicting internal flow in the pipe with valve. In additional, the contribution of compressible/incompressible pressure by frequency band was evaluated using the wavenumber-frequency analysis. To predict a low/middle frequency pipe noise, the vibroacoustic analysis method was developed based on Finite Element Method (FEM). And the pipe noise prediction method for the middle/high frequency was developed based on Statistical Energy Analysis (SEA).

A Study on the Variation of Physical Properties on the Secondary Product of Cement by Using Crushed Stone Powder (폐석분을 사용한 시멘트 2차 제품의 물리적 특성에 관한 연구)

  • Park, Ji-Sun;Lee, Sea-Hyun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.103-111
    • /
    • 2012
  • One of the basic physical properties of the hardened cement paste, the rigidity, is deteriorated during concrete matrix forming, depending on the replacement rate of the crushed stone powder, and due to drying shrinkage. Therefore, the concrete containing crushed stone powder has been limitedly used as non-structural construction material. To improve these disadvantages, a hydrothermal reaction employing method can be considered. High-temperature and high-pressure water is involved in the hydrothermal reaction in the mixing with specific materials. The rigidity improving mechanism is related to the synthesis of calcium silicate. The calcium silicate is produced through reaction between calcium compounds and the silicic acid. Various kinds of calcium silicate can be produced depending on the CaO/$SiO_2$ mole ratio, the temperature of the hydrothermal synthesis, the pressure, and the reaction time. The product of the synthesis mechanism, tobermorite crystal, plays a pivotal role for the rigidity reinforcement. The crushed stone powder, analyzed in this study, contains 50 to 60% of $SiO_2$ and 10 to 20% $Al_2O_3$. The composite rate is appropriate to create the tobermorite crystal through formation of hardened cement matrix under the hydrothermal synthetic conditions and with the CaO in the cement. Moreover, further reinforcement was promoted using the property of material under the identical density through promoting the formation of tobermorite crystal.

  • PDF

A Study on Direct Cooling and Washing Machine for Energy Saving-Type Dyeing Machine (에너지 절감형 염색기용 직접냉각수세장치에 대한 연구)

  • Han, Seung-Chul;Kim, Jin-Ho;Kim, Je-Hoon;Lee, Sung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.485-491
    • /
    • 2012
  • Due to increase in production of the domestic textile industry, energy consumption in textile industry is still growing. Traditional dyeing machine has high temperature and pressure. Accordingly, it uses an indirect cooling system that utilize a heat exchanger to cool after the dyeing. However, this indirect cooling system consumes a great deal of water, takes prolonged periods of time to process and, most importantly, because of the condensing of the dye at the cooling stage requires further energy in reduction cleaning and washing process. Therefore, in this paper, we propose a direct cooling washing machine that replaces the traditional indirect cooling system to provide coolant into the dyeing machine. The newly proposed direct cooling washing machine will still use parts of the traditional dying but will be able to skip the cooling as well as the reduction cleaning and washing process, resulting in less processing time and lower energy consumption. Also, we made a prototype. The prototype was applied to dyeing machine to test the direct cooling washing machine's ability and dyeing property. Additionally, we compared indirect cooling washing machine with direct cooling washing machine about ability, material and energy saving assessment.

An Experimental Study on Mechanical Properties of Ultra-High Strength Powder Concrete (압축강도 300MPa 이상의 초고강도 분체콘크리트 개발을 위한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • In this study, ordinary Portland cement was used and the air void was minimized by using minute quartz as the filler. In addition, steel fibers were used to mitigate the brittle failure problem associated with high strength concrete. This study is in progress to make an Ultra-high strength powdered concrete (UHSPC) which has compressive strength over 300 MPa. To increase the strength of concrete, we have compared and analyzed the compressive strengths of the concretes with different mix proportions and curing conditions by selecting quartz sand, dolomite, bauxite, ferro silicon which have diameters less than 0.6 mm and can increase the bond strength of the transition zone. Ultra-high strength powdered concrete, which is different from conventional concrete, is highly influenced by the materials in the mix. In the study, the highest compressive strength of the powdered concrete was obtained when it is prepared with ferro silicon, followed in order by Bauxite, Dolomite, and Quartz sand. The amount of ferro silicon, when the highest strength was obtained, was 110%, of the weight of the cement. SEM analysis of the UHSPC showed that significant formation of C-S-H and Tobermorite due to high temperature and pressure curing. Production of Ultrahigh strength powdered concrete which has 28-day compressive strength upto 341MPa has been successfully achieved by the following factors; steel fiber reinforcement, fine particled aggregates, and the filling powder to minimize the void space, and the reactive materials.

Fabrication of Silicon Carbide Candle Filter and Performance Evaluation at High Temperature and Pressure (탄화규소 캔들형 필터의 제조 및 고온고압 하에서의 성능평가)

  • Lee, Sang-Hun;Lee, Seung-Won;Lee, Kee-Sung;Han, In-Sub;Seo, Doo-Won;Park, Seok-Joo;Park, Young-Ok;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.503-510
    • /
    • 2002
  • Silicon carbide candle filters for the pressurized fluidized bed combustion system were fabricated by extrusion process. Carbon black was added to control the porosity. Inorganic additives such as clay and calcium carbonate were added to exhibit appropriate strength. Silicon carbide layer with a finer pore size (mean pore diameter ~$10{\mu}m$) was coated on the silicon carbide support layer (mean pore diameter ~$47{\mu}m$, porosity ∼40%). After that, the filter was sintered at 1400${\circ}C$ in air. We evaluated the filtration performances of the filter at 500${\circ}C$ and $5kgf/cm^2$ of pressure. As a result, high separation efficiency, >99.999% was measured. It is expected that silicon carbide candle filter can be successfully used for the pressurized fluidized bed combustion system.

석류석과 녹염석간의 철-알루미늄 교환에 관한 실험암석학적 연구

  • 김형식;김진섭;김기영;이설경;신의철;권용완
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.185-195
    • /
    • 1994
  • An experimental study of iron-aluminium partitioning between synthetic garnet and synthetic epidote was carried out, as equilibrium was maintained in the exchange reaction expressed as follows : $Ca_3Fe_2Si_3O_12\+\2\Ca_2Al_2AlSi_3O_12$(0H) = $Ca_3Al_2Si_3O_12\+\Ca_2Al_2FeSi_3O_12$(0H) Temperature has a pronounced effect on the distribution of Fe and A1 between the minerals. However, the pressure effect is not so drastic as in the exchange reaction. With increasing temperature, $Fe^{+3}$ becomes redistributed from garnet into epidote, whereas A1 becomes redistributed from epidote into garnet. This is in line with the general principle of phase correspondence, as the temperature increases the more electropositive metal aluminium redistributes from epidote into garnet. The agreement between the experimental results of this study and the natural samples suggests that $K_D=X^{Ep}_{Fe}/X^{Gr}_{Fe}$ may be a useful geothermometer for metamorphic rocks containing garnet and epidote that are close to binary Fe-A1 compounds.

  • PDF

Study on the Pretreatment of Rice Hull to Enhance Enzymatic Saccharification Efficiency (효소 당화효율 증진을 위한 왕겨의 전처리 방법 연구)

  • Bark, Surn-Teh;Koo, Bon-Cheol;Moon, Youn-Ho;Cha, Young-Lok;Yoon, Young-Mi;Kim, Jung Kon;An, Gi Hong;Park, Kwang-Geun;Park, Don-Hee
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.399-404
    • /
    • 2012
  • The objective of this study was to investigate the efficient pretreatment method for bioethanol production from rice hull. Ammonia and sodium hydroxide as an alkaline solution and dilute sulfuric acid as an acidic solution were used in a batch reactor under high-temperature and high-pressure conditions. The highest enzymatic saccharification efficiency of 82.8% and ash removal rate of 94.7% were obtained in the dilute sulfuric acid treated sample after the sodium hydroxide solution treatment. The enzymatic saccharification efficiencies and ash removals of pretreated rice hull samples have very similar variation tendency. This means that the maximum obstructive factor for the enzymatic saccharification of rice hull is the ash (silicate) content in biomass. The findings suggest that the combined sodium hydroxide-dilute sulfuric acid treatment system under high-temperature and high-pressure conditions is a promising pretreatment method to enhance the enzymatic saccharification of the silica-rich biomass.

A Study on the Characteristics of Natural, Synthetic, and Treated Gem Quality Diamonds by NMR and EPR (NMR과 EPR을 이용한 천연, 합성, 그리고 처리된 보석용 다이아몬드의 특성 연구)

  • Kim, Jong-Rang;Jang, Yun-Deuk;Kim, Sun-Ha;Kim, Jong-Hwa;Paik, Youn-Kee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.435-442
    • /
    • 2008
  • Natural, synthetic, and treated diamonds were studied by NMR and EPR. It was demonstrated that natural and synthetic diamonds, treated and non-treated diamonds, high pressure high temperature (HPHT) treated and electron beam treated diamonds could be distinguished among each other based on the $^{13}C$ NMR spectra acquired for relatively short periods of 100 minutes. The $^{13}C$ NMR linewidths of gem quality synthetic diamonds were broader than 1.6 ppm due to the paramagentic effects of transition metals, generally used as catalysts, while the linewidths of gem quality natural diamonds were narrower than 0.5 ppm regardless of the methods of treatment. The linewidth (0.5 ppm) for a HPHT treated, gem quality natural diamond was as broad as more than twice of the linewidth (0.2 ppm) of an electron beam treated diamond. The $^{13}C$ NMR signal intensities of treated, gem quality natural diamonds were as strong as more than 10 times of the intensities of non-treated, gem quality natural diamonds. When correlated with the concentrations of the paramagnetic defects (electrons) obtained from the EPR spectra, the relative $^{13}C$ NMR signal intensities increased in proportion to the concentrations of the paramagnetic electrons contained in each sample but the electron beam treated diamond was an exception. This suggested that the lattice component, in addition to the paramagnetic defect component, should also be considered in determining the $^{13}C$ NMR signal intensity of the electron beam treated diamond.

High Pressure Leaching of Matte Converted from Cobalt Concentrate from Democratic Republic of the Congo (콩고산 코발트 정광으로부터 제조한 매트의 고온고압침출)

  • Kim, Gunha;Kang, Ga-hee;Kim, Sookyung;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.32-37
    • /
    • 2015
  • Cobalt is abundant only in some countries including Democratic Republic of the Congo. It would be necessary to secure overseas Co ores and Co extraction technology. Two kinds of matte varying the sulfur content were manufactured by smelting reduction of Co concentrate containing ~8 wt% Co, ~19 wt% Cu, and ~3 wt% Fe. The amount of Co, Cu and Fe was concentrated to 19~21 wt%, 39~41 wt%, and 7~9 wt% respectively in the resulting matte. High-pressure leaching of matte was performed in an autoclave with considering the effect of oxidizing agent, $H_2SO_4$ concentration as a lixiviant, and the amount of sulfur added to the matte. An oxidizing agent (oxygen) is necessary to improve Co leaching efficiency enabling usage of a dilute $H_2SO_4$ leaching agent. An increase in $H_2SO_4$ concentration prevents selective leaching of Co, and the sulfur content in matte has a minor influence on the Co leaching efficiency.