• Title/Summary/Keyword: 고연소도

Search Result 534, Processing Time 0.029 seconds

The Effect on the Combustion and Emission Characteristics of HCNG Engine According to the High Purity Hydrogen Contents (고순도 수소함량에 따른 HCNG 연소특성 및 배출가스 영향 평가)

  • Lee, Jong-Tae;Lim, Yun-Sung;Kim, Hyung-Jun;Lee, Seong-Wook;Lee, Jang-Hoon;Kim, Jong-Geu
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.152-157
    • /
    • 2012
  • This investigation decribes the effect of the combustion and emission characteristics of HCNG engine according to the high purity hydrogen contents. The HCNG fuel was made by the mixture with a high purity hydrogen ($H_2$) and a natural gas. The test vehicle was applied to the bi-fuel (Gasoline and CNG) system and this system was modified from the fuel supply and fuel tank. In addition, the three premixed HCNG fuels with mixed rate of 10, 20 and 30% of hydrogen were used to maintain the safety. In order to analyze the combustion characteristics of HCNG and CNG, the fuel was injected in the combustor with constant volume. The exhaust emission from light duty vehicle with bi-fuel system was analyzed by a chassis dynamometer and emission analyzer. From these results, the reduction rate of NOx emission increased in the HCNG fuel and emission amount of THC and CO shows a similar level with CNG fuel. This study can be utilized the basic data for the development of a new business plans related with HCNG engines.

Flame image precise measurement and flame control to raise combustion efficiencies of a blast furnace (고로의 연소효율을 높이기 위한 화염영상 정밀 검출 및 화염제어)

  • Kim, Jae-Yeol;Lee, Seung-Chul;Kwak, Nam-Su;Han, Jae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.8-14
    • /
    • 2014
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) was developed for iron making. The combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational conditions are numerically predicted to determine the performance levels with regard to different locations of the nozzles in a blast furnace. A variety of parameters, including the pulverized coal quantities, oxygen amounts, inlet temperatures of the tuyeres, and the mass flow rate of coal carrier gas are taken into consideration. Also, in order to develop greater efficiency than those of existing coal injection systems, this study applies a flame measurement system using a charge-coupled device (CCD) camera and a frame grabber. It uses auto sampling algorithms from the flame shape information to determine the device for the optimal location control for PCI. This study finds further improvements of the blast furnace performance via the control of the PCI locations.

Characteristics and Economic Evaluation of a CO2-Capturing Repowering System with Oxy-Fuel Combustion for Utilizing Exhaust Gas of MCFC (MCFC 배기가스를 이용하는 순산소연소 $CO_2$ 회수형 발전시스템의 특성과 경제성 평가)

  • Pak, Pyong-Sik;Lee, Young-Duk;Ahn, Kook-Young;Jeong, Hyun-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2940-2945
    • /
    • 2008
  • The scale of 2.4 MW MCFC was taken to construct a high-efficiency and economical power generation system without CO2 emission into the atmosphere for utilizing its exhaust gas. The conventional steam turbine power generation system (STGS) was evaluated and the net generated power (NGP) was estimated to be only 133 kW and the STGS is not economically feasible. A CO2-caputuring repowering system was proposed, where low temperature steam (LTS) produced at HRSG by using exhaust gas from MCFC is utilized as a main working fluid of a gas turbine, and the temperature of LTS was raised by combusting fuel in a combustor by using pure oxygen, not the air. It has been shown that NGP of the proposed system is 264 kW, and CO2 reduction amount is 608 t-CO2/y, compared to 306 t-CO2/y of STGS. The CO2 reduction cost was estimated to be negligible small, even when the costs of oxygen production and CO2 liquefaction facilities etc. were taken into account.

  • PDF

Pulverized coal injection system development to raise combustion efficiencies of a blast furnace (고로의 연소효율을 높이기 위한 미분탄 공급 시스템 개발)

  • An, Young-Jin;Kang, Pub-Sung;Kwak, Na-Soo;Choi, Gyung-Min;Lee, Min-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3163-3168
    • /
    • 2008
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) system was developed for iron making. Combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational are numerically predicted to recognize the performance with the locations of nozzles in a blast furnace. A variety of parameters including the pulverized coal quantities, oxygen amounts, inlet temperature of the tuyeres and mass flow rate of coal carrier gas are taken into consideration. Also In order to develop more efficient than existing coal injection system, this study applies a flame measurement system using a charge couple device (CCD) camera and frame grabber. And it has used algorithms of auto sampling from flame shape information and composed the device for location control of PCI. This study find to further improve the blast furnace performance by the control of PCI locations.

  • PDF

A Study on the Thrust and Flow Characteristics of High Spin RAP(Rocket Assisted Projectile) (고속 회전하는 RAP(Rocket Assisted Projectile)의 추력 및 유동 특성에 관한 연구)

  • Ban, Youngwoo;Jung, Hyunho;Park, Juhyeon;Joo, Hyeonguk;Lee, Chihoon;Park, Yongin;Yoon, Jongwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1072-1076
    • /
    • 2017
  • In this paper, a numerical study has been performed to analyze flow characteristics of rocket propulsion. Through the ground spin test, combustion chamber pressure was measured. Based on the experimental results, numerical analysis was conducted under various nozzle pressure ratio conditions such as standard, operating and base pressure conditions. And it was compared with quasi-1D solution and experimental result. In addition, the difference in thrust characteristics according to the spin/non-spin of the flow conditions was confirmed at the same nozzle pressure ratio.

  • PDF

Detonation Wave Studies for CVC Engines of TBCC (TBCC를 위한 CVC 엔진의 데토네이션 현상 기초 연구)

  • Choi, J.Y.;Parent, Bernard;Cho, D.R.;Kang, K.;Shin, J.R.;Lee, S.H.;Yi, T.H.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.326-329
    • /
    • 2008
  • DARPA's hypersonic propulsion program VULCAN is aimed for development of Mach 4+ capable engine by combining current production turbofan engine such as F119 with CVC (Constant Volume Combustion) engine. Final goal is a TBCC(Turbo-based Combined Cycle) engine by combining with dual mode ramjet/scramjet engine. CVC is a common designation of new concept of high efficiency engines, such as Pulse Detonation Engine (PDE) or Continuous Detonation Engine (CDE), which use the detonation as a combustion mechanism. Present paper introduces the internationally collaborative research activities carried out in Aerospace Combustion and Propulsion Laboratory of the department of Aerospace Engineering of the Pusan national University.

  • PDF

Performance Test of a Small Simulated High-Altitude Test Facility for a Gas-turbine Combustor (가스터빈 저온/저압 점화장치 구성 및 운영조건 확인 시험)

  • Kim, Tae-Woan;Lee, Yang-Suk;Ko, Young-Sung;Lim, Byeung-Jun;Kim, Hyeong-Mo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.153-156
    • /
    • 2008
  • Ignition and combustion performance of a gas-turbine engine were changed by various high-altitude condition. A goal of this study is to make the small test facility to simulate high-altitude condition. To perform the low pressure condition, a diffuser was used in various diffuser front of primary nozzle pressure. To perform the low temperature, heat exchanger was used in various mixture ratio of cryogenic air and ambient temperature air. The experimental result shows that high-altitude conditions can be controled by diffuser front of primary nozzle pressure and mixture ratio of cryogenic air and ambient temperature air.

  • PDF

$\b{W}$형 3-Loop 발전소에 대한 일체형 가연성 흡수봉 경제성 평가

  • 박상원;장도익;정선교
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.213-218
    • /
    • 1996
  • 가압 경수로의 노심설계에 있어서 제한된 우라늄 자원의 효율적인 이용을 위한 다양한 방안으로 장주기 운전, 고 방출연소도 및 저누출 장전모형 등을 강구하고 있는 추세이다. 이러한 노심들은 원자로 운전주기 전반에 걸친 공간적 출력 분포 제어와 잉여반응도 제어를 위해 가연성 흡수봉을 사용하고 있으며 이와 관련 하여 가연성 흡수봉에 대한 전략등이 다 각도로 검토되고 있으며 다양한 노심에 대한 최적의 가연성 흡수봉 혹은 그 전략에 대해 많은 연구가 진행되고 있다. 본 연구에서는 웨스팅하우스형 3-Loop 발전소에 대해, 장주기 (18 개월-480 EFPD), 저누출 장전 모형 전략을 채용하여, Er$_2$O$_3$, Gd$_2$O$_3$, ZrB$_2$의 일체형 가연성 흡수봉에 대한 노심특성 및 경제성을 평형노심개념을 적용, KNFC가 노심설계에 사용하고 있는 APA(ALPHA/PHOENIX-P/ANC) 8.0.0 코드 체계를 이용하여 평가하였다. 노심특성에 대해서는 감속재 온도계수, 첨두출력인자, 잔존흡수봉효과 및 노심 연소거동에 대한 평가가 수행되었고, 동일한 주기길이(480 EFPD) 에 대한 우라늄 적재량에 대해 원광비, 변환비, 농축비, 가공비 그리고 이자율 등을 고려하여 핵주기 경제성 평가 코드인 POCO 코드를 이용하여 경제성을 평가하였다.

  • PDF

Effect of Multi-Swirl Injector on Acoustic Damping for Reduction of Combustion Instability (연소불안정 저감을 위한 다중 스월 인젝터의 음향학적 감쇠기능)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.62-71
    • /
    • 2008
  • Swirl injector with adjustable backhole length was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and its damping capacity is verified in atmospheric temperature. Experiments were carried out with copied tubes on air core because the interior air core volume of injector has a direct effect on damping. From the experimental data, it is proved that increasing the number of injectors mounted at each anti-node point can increase acoustic damping effect. Also, when tuned injectors at 1L, 1T, 1L1T modes simultaneously are installed at each anti-node point of model chamber, the damping effect of tuned injectors with multi modes agree well with it of tuned injectors with single mode.

A Study on the Fire Resistance Performance of Wood Framed Lightweight Wall which Including a Middle Lintel (중인방을 포함한 목골조 경량벽체의 내화성능에 관한 연구)

  • Yeo, In-Hwan;Cho, Bum-Yean;Min, Byung-Yeol;Yoon, Myung-O
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.91-98
    • /
    • 2011
  • This study is about fire resistance performance of wood framed lightweight wall including a middle lintel as a traditional wall form in Korea. The target wall is non-loadbearing system which constructed with $38{\times}89$ mm ($2"{\times}4"$) wood frame and fireproof gypsum board covering, including a middle lintel made of $150{\times}150$ mm section glue-laminated timber. As a test results, all specimens have showed fire resistant performance over 90 minutes and tests were maintained until flame occuring on Specimen-l, 2, 3 at 91 min, 97 min and 98 min respectively. Fire resistance of the heat side gypsum board was 45 minutes and charring rate of middle lintel was equivalant with that of usual timber. The wood stud inside wall system showed relatively quick combution characteristic when exposed to high temperature with no temperature rising delaying time caused by moisture evaporation because of the dehydration preceded during the early period of fire side gypsum board resist to heat.