• Title/Summary/Keyword: 고압가스공급설비

Search Result 27, Processing Time 0.02 seconds

Air Similarity Performance Test of Turbopump Turbine (터보펌프용 터빈 공기상사 성능시험)

  • Lim Byeung-Jun;Hong Chang-Uk;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 2006
  • In liquid rocket engine turbopump, it is difficult to evaluate turbine performance for high pressure, high temperature circumstance. Turbine test is often done by using air at similarity condition so that the turbine can be tested at lower risk. This paper describes an air similarity test program of liquid rocket engine turbopump turbine. A test facility has been built to evaluate aerodynamic performance of turbines. The test facility consists of high pressure air supply system, mass flow rate measuring nozzle, test section, hydraulic break, exit orifice for pressure control, instrumentation and control system. This paper also presents how to decide the similarity conditions of the turbine test and describes how to control test conditions. Relative standard deviation of measurement parameter was less than 1% and measured turbine efficiency corresponded with analysis result within 2%.

A Study on the Improvement of Selection Method of Safety Distance for Worker in Hydrogen Refueling Station (수소 충전 시설 내 근로자를 위한 안전거리 선정 방법 개선에 관한 연구)

  • Hyo-Ryeol Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.78-84
    • /
    • 2023
  • Recently, the world's countries are tightening regulations on CO2 and air pollutants emission to solve them. In addition, eco friendly vehicles is increasing to replace automobiles in internal combustion engine. The government is supporting the expansion of hydrogen refueling infrastructure according to the hydrogen economy road map. In particular, refueling station is important to secure the safety that supplies high-pressure hydrogen with a wide LFL range. This paper is on guidelines for the determination safety distances to ensure worker safety from accident as jet fire. The safety distance is set according to the procedure of the EIGA doc 075/21. For accident frequency is upper 3.5E-05 per annum, safety distance is decided via consequence analysis where the risk of harm is below individual harm exposure threshold.

The Verification Test of Launch Control System Algorithms Using Automated Verification System (자동화 검증시스템을 이용한 발사관제시스템 알고리즘 검증시험)

  • An, Jae-Chel;Moon, Kyung-Rok;Oh, Il-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.127-137
    • /
    • 2021
  • The launch complex(LC) is composed of various facilities. The launch control system that operates remotely those of LC spends much time and labor for developing and verifying its control algorithms. The verification of algorithms is performed by the software developer entering simulated state values based on the test procedure and checking the output result according to the algorithm flow. These verification processes should be performed repeatedly, thus the human errors are easily occurred. In this paper, an efficient automated verification method with a script test procedure is proposed to minimize human errors and shorten the verification duration. We also present the results of the algorithm verification tests for the cases of the compressed gases supply system and the electro pneumatic panel system of LC.

Design and Test of Thermal Control and Fire Safety System for Space Launch Vehicle (발사체 열제어/화재안전 시스템 설계 및 시험)

  • Ko, Ju Yong;Oh, Taek Hyun;Lee, Joon-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1006-1010
    • /
    • 2017
  • This paper describes the design and test of the thermal control and fire safety system for thermal control and the fire/explosion prevention of inside the compartment during the preparation and operation of the space launch vehicle at the launch pad. The system considered here is for the test launch vehicle which is being developed as part of the development of the Korean Space launch vehicle-II. This system applies the high pressure system based on the heritage of Naro launch vehicle. The selection of thermal control and fire safety system from high pressure and low pressure system is done in consideration of the characteristics of the launch pad gas supply system and the characteristics of launch vehicle, and the system configuration is also changed accordingly. As a result, it has been confirmed that the developed system satisfies the initial design conditions through the test. Moreover the system will be applied to the development of the Korean launch vehicle in the future.

  • PDF

Present Status of Hydrogen Refueling Station in KIER (KIER 수소충전소 구축 현황)

  • Seo, Dong-Joo;Seo, Yu-Taek;Seo, Yong-Seog;Park, Sang-Ho;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.21-24
    • /
    • 2006
  • 수소의 소규모 분산 생산 기술은 본격 적 인 수소 인프라가 도입되기 전에 연료전지 자동차의 수소 충전용이나 분산 발전형 연료전지의 수소 공급을 위해 필요하다. 생산 용량은 수소 기준으로 $20{\sim}100 Nm^3/hr$ 정도로 현재로선 천연가스의 수증기 개 질법이 가장 경제적인 공정으로 알려져 있다. 소규모 생산에 따른 열효율 저하를 줄이 기 위해 단위 공정들이 통합된 컴팩트 개질 시스템의 개발이 필요하다. 연료전지 자동차용 수소 인프라 조기 구축을 위하여 수소충전소 구축과 국산화 천연가스 수증기 개질기 개발을 병행하여 진행하였다. 수소 충전소 구축 부분은 충전소 부지 확보, 건물 건축, 각종 유틸리 티 설치의 토목 부분과 천연가스 개질형 수소 제조 유닛 설치, 수소 압축, 저장, 디스펜싱 시스템 설치를 포함하고 있으며 고압 설비에 대한 인허가 대응 및 안전대책 작업도 진행하였다. 구축된 수소충전소는 향후 연료전지 자동차 연계 실증 프로그램에 활용할 수 있다. 국산화 핵심 기술 개발을 위하여 열 및 시스템 통합 설계에 의 해 천연가스 수증기 개질기를 제작하고 내부 열교환 구조에 따른 개질기의 성능을 평가하였다. 개발된 개질기는 개질온도 $720^{\circ}C$, 수증기 대 카본 비 2.7의 운전조건에서 $23Nm^3/h$ 이상의 수소 생산이 가능하였으며 73% 이상의 개질 효율을 나타내었다. 개발된 천연가스 수증기 개질기는 향후 수소 정제용 PSA(Pressure Swing Adsorption) 시스템과 연계하여 수소충전소 국산화 엔지니어링 설계 패키지 개발의 핵심 기 술로 사용할 계획이다.시간 정도 운전한 후 시스템을 정지하였다 메탄 전환율과 일산화 탄소 농도, 열효율을 모니터링 하고 있으며, 현재까지 초기 성능을 그대로 유지하고 있다. 앞으로 일일시동-정지 운전 시험을 지속하면서 초기 시동 특성 및 부하 변동에 따른 응답 특성 개선, 그리고 연료전지와의 연계 운전을 실시할 예정이다 한다. 단위 전지 운전 온도 $130^{\circ}C$, 상대습도 37%의 운전 조건에서도 상당히 우수한 전지 성능을 보임에 따라 고온/저가습 조건에서 상용 Nafion 112 막보다 우수한 막 특성을 나타냄을 확인하였다.소/배후방사능비는 각각 $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45$ 그리고 $5.59{\pm}0.40$이었고, $^{67}Ga$-citrate의 경우 2시간, 24시간, 48시간에 $3.06{\pm}0.84,\;4.12{\pm}0.54\;4.55{\pm}0.74 $이었다. 결론 : Transferrin에 $^{99m}Tc$을 이용한 방사성표지가 성공적으로 이루어졌고, $^{99m}Tc$-transferrin의 표지효율은 8시간까지 95% 이상의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{

  • PDF

A Study on the Improvement of Welding Method for Ice Evaporator (얼음증발기 용접방법 개선에 관한 연구)

  • Lee, Jeong-Youn;Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.558-564
    • /
    • 2021
  • The water purifier market has increased rapidly in recent years. The welding technology of the evaporator is a key component that determines the level of ice production and the cold water performance of an ice purifier. The finger type evaporator of an ice purifier can remove ice and is divided largely into an instant heat method and a hot gas method. In the hot gas type evaporator, particularly during the production process, the pinhole phenomenon inside the copper pipe and clogging problems occur intermittently when welding high-pressure pipes due to the high-temperature oxygen welding. Its use in a water purifier can cause a problem in that ice and cold water do not form, and repairs cannot be made on site. To solve this problem, in this study, a cap jig was applied to improve the welding defect of the hot gas evaporator. In addition, the oxygen welding flame size was adjusted so that the heat source could be well supplied to the cap jig, and the effectiveness was confirmed through a wave pressure test, a test, and a thermal shock test.

Simulation and Sensitivity Analysis of the Air Separation Unit for SNG Production Relative to Air Boosting Ratios (SNG 생산용 공기분리공정의 공기 재 압축비에 따른 민감도 분석)

  • Kim, Mi-yeong;Joo, Yong-Jin;Seo, Dong Kyun;Shin, Jugon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2019
  • Cryogenic air separation unit produces various gases such as $N_2$, $O_2$, and Ar by liquefying air. The process also varies with diverse production conditions. The one for SNG production among them has lower efficiency compared to other air separation unit because it requires ultrapure $O_2$ with purity not lower than 99.5%. Among factors that reduce the efficiency of air separation unit, power consumption due to compress air and heat duty of double column were representatives. In this study, simulation of the air separation unit for SNG production was carry out by using ASEPN PLUS. In the results of the simulation, 18.21 kg/s of at least 99.5% pure $O_2$ was produced and 33.26 MW of power was consumed. To improve the energy efficiency of air separation unit for SNG production, the sensitivity analysis for power consumption, purities and flow rate of $N_2$, $O_2$ production in the air separation unit was performed by change of air boosting ratios. The simulated model has three types of air with different pressure levels and two air boosting ratio. The air boosting ratio means flow rate ratio of air by recompressing in the process. As increasing the first air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over increase and $O_2$ flow rate and purity decrease. As increasing the second air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over decreases and $O_2$ flow rate increases but the purity of $O_2$ decreases. In addition, power consumption of compressing to increase in the two cases but results of heat duty in double column were different. The heat duty in double column decreases as increasing the first air boosting ratio but increases as increasing the second air boosting ratio. According to the results of the sensitivity analysis, the optimum air boosting ratios were 0.48 and 0.50 respectively and after adjusting the air boosting ratios, power consumption decreased by approximately 7% from $0.51kWh/O_2kg$ to $0.47kWh/O_2kg$.