• Title/Summary/Keyword: 고알칼리성

Search Result 2, Processing Time 0.015 seconds

Concentration of Radioactive Materials for the Phanerozoic Plutonic Rocks in Korea and Its Implication (국내 현생 심성암류의 방사성 물질의 농도 및 의미)

  • Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.565-583
    • /
    • 2020
  • In recent years, various social issues related to the natural radioactive elements detected in household goods and building materials are addressed, and should be solved promptly. In Korea, for more than 20 years, the Ministry of Environment has investigated the natural radioactive materials such as heavy metals, uranium, and radon in soil or groundwater. The origins of natural radioactive materials in them may have a close correlation with the geological factors including classification of rocks, petrogenetic origins, and deformation characteristics, but the exact geological correlations are not clarified because of the absence of the government policy preserved in the basement rocks, soils as well as groundwater in fault-related reservoirs. This study aims to perform a research on the correlation between the petrogeneses of the Phanerozoic plutonic rocks and natural radioactive concentrations in rocks (radon, uranium, thorium, potassium etc.) in Korea. Among the Phanerozoic plutonic rocks, alkaline plutonic rocks (syenite, monzonite and monzodiorite and alkali granite) show high U and Th concentrations by high solubilities of U, Th, Zr, REE, and Nb until the most extreme stages of magmatic fractionation (viz. crystal fractionation) due to high magma temperature and high alkalinity tendency. The highly fractionated high-K calalkaline and peraluminous granitic rocks (leucogranite, two-mica granite and leucocratic pegmatite are also U and Th concentrations compared with other less or medium fractionated granitic rocks (diorite, granodiorite and granite). The alkaline plutonic rocks are associated with intracontinental rifting and extensional environment after crustal thickening by collisional and subductional processes. In contrast, the dominant calc-alkaline granitic rocks in Korea are related to the arc environment of the subduction zone. In summary, the trends of the U, Th and K concentration from the Phanerozoic plutonic rocks in Korea are closely linked to the petrogenesis of the rocks in tectonic environment. The preliminary data for gamma-spectrometric mesurments of natural radionuclide contents (226Ra, 232Th and 40K) in the Phanerozoic plutonic rocks show high values in the alkaline and highly fractionated granitic rocks.

Homogenization Analysis of Problems related to Quartz Dissolution and Hydroxide Diffusion (석영광물의 용해 및 수산화 이온의 확산에 관한 균질화해석)

  • Choi, Jung-Hae;Ichikawa, Yasuaki
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.271-279
    • /
    • 2010
  • Time-dependent behavior similar to secondary deformation related to mineral dissolution is easily observed when performing a laboratory pressure experiment. In this research, to observe the dissolution of quartz found in bentonite used as buffer material for the geological disposal of high-level waste (HLW) under conditions of high pH, we calculated the diffusion of $OH^-$ ions and the behavior of quartz dissolution using the homogenization analysis method. The results reveal that the rate of quartz dissolution is proportional to the temperature and interlayer water thickness. In particular, in a high-pH environment, the reacted area (and therefore the dissolution rate) increases with decreasing interlayer water thickness.