• 제목/요약/키워드: 고속 R-CNN

검색결과 4건 처리시간 0.016초

적외선 카메라 영상에서의 마스크 R-CNN기반 발열객체검출 (Object Detection based on Mask R-CNN from Infrared Camera)

  • 송현철;강민식;김태은
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권6호
    • /
    • pp.1213-1218
    • /
    • 2018
  • 최근 비전분야에 소개된 Mask R-CNN은 객체 인스턴스 세분화를위한 개념적으로 간단하고 유연하며 일반적인 프레임 워크를 제시한다. 이 논문에서는 열적외선 카메라로부터 획득한 열감지영상에서 발열체인 인스턴스에 대해 발열부위의 세그멘테이션 마스크를 생성하는 동시에 이미지 내의 오브젝트 발열부분을 효율적으로 탐색하는 알고리즘을 제안한다. Mask R-CNN 기법은 바운딩 박스 인식을 위해 기존 브랜치와 병렬로 객체 마스크를 예측하기 위한 브랜치를 추가함으로써 Faster R-CNN을 확장한 알고리즘이다. Mask R-CNN은 훈련이 간단하고 빠르게 실행하는 고속 R-CNN에 추가된다. 더욱이, Mask R-CNN은 다른 작업으로 일반화하기 용이하다. 본 연구에서는 이 R-CNN기반 적외선 영상 검출알고리즘을 제안하여 RGB영상에서 구별할 수 없는 발열체를 탐지하였다. 실험결과 Mask R-CNN에서 변별하지 못하는 발열객체를 성공적으로 검출하였다.

mask R-CNN 기반의 철도선로 객체검출 및 분류에 관한 연구 (Research on railroad track object detection and classification based on mask R-CNN)

  • 이승신;최종원;오염덕
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.81-83
    • /
    • 2024
  • 본 논문에서는 mask R-CNN의 이미지 세그먼테이션(Image Segmentation) 기법을 이용하여 철도의 선로를 식별하고 분류하는 방법을 제안한다. mask R-CNN의 이미지 세그먼테이션은 바운딩 박스(Bounding Box)를 통해 이미지에서 객체를 식별하는 R-CNN 알고리즘과는 달리 픽셀 단위로 관심 있는 객체를 검출하고 분류하는 기법으로서 오브젝트 디텍션(Object Detection)보다 더욱 정교한 객체 식별이 가능하다. 본 연구에서는 Pascal VOC 형태의 고속철도 데이터 24,205셋의 데이터를 전처리하고 MS COCO 데이터셋으로 변환하여, MMDetection의 mask R-CNN을 통해 픽셀 단위로 철도선로를 식별하고 정상/불량 상태를 분류하는 연구를 수행하였다. 선행연구에서는 YOLO를 활용하여 Polygon형태의 좌표를 바운딩 박스로 분류하였는데, 본 연구에서는 mask R-CNN을 활용함으로써 철도 선로를 더욱 정교하게 식별하였으며 정상/불량의 상태 분류는 YOLO와 유사한 성능을 보였다.

  • PDF

초고속 R-CNN을 이용한 얼굴영상에서 눈 및 입술영역 검출방법 (A Method of Eye and Lip Region Detection using Faster R-CNN in Face Image)

  • 이정환
    • 한국융합학회논문지
    • /
    • 제9권8호
    • /
    • pp.1-8
    • /
    • 2018
  • 얼굴인식, 홍채인식과 같은 생체보안 분야에서 눈, 코, 입술 등 얼굴특징을 추출하는 과정은 필수적이다. 본 논문은 초고속(faster) R-CNN을 이용하여 얼굴영상에서 눈 및 입술영역을 검출하는 방법을 연구하였다. 초고속 R-CNN은 딥러닝을 이용한 물체검출 방법으로 기존의 특징기반 방법에 비해 성능이 우수한 것으로 알려져 있다. 본 논문에서는 얼굴영상에 콘볼루션, 선형정류과정, max pooling과정을 차례로 적용하여 특징맵을 추출하고 이로부터 제안영역(region proposal)을 검출하는 RPN(region proposal network)을 학습한다. 그리고 제안영역과 특징맵을 이용하여 눈 및 입술 검출기(detector)를 학습한다. 제안방법의 성능을 검토하기 위해 남녀한국인 얼굴영상 800장으로 실험하였다. 학습을 위해 480장을 이용했으며 테스트용으로 320장을 사용하였다. 컴퓨터모의 실험결과 눈 및 입술영역 검출의 평균정확도는 50 에포치일 때 각각 97.7%, 91.0%를 얻을 수 있었다.

위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구 (A Study on Lightweight CNN-based Interpolation Method for Satellite Images)

  • 김현호;서두천;정재헌;김용우
    • 대한원격탐사학회지
    • /
    • 제38권2호
    • /
    • pp.167-177
    • /
    • 2022
  • 위성 영상 촬영 후 지상국에 전송된 영상을 이용하여 최종 위성 영상을 획득하기 위해 많은 영상 전/후 처리 과정이 수반된다. 전/후처리 과정 중 레벨 1R 영상에서 레벨 1G 영상으로 변환 시 기하 보정은 필수적으로 요구된다. 기하 보정 알고리즘에서는 보간 기법을 필연적으로 사용하게 되며, 보간 기법의 정확도에 따라서 레벨 1G 영상의 품질이 결정된다. 또한, 레벨 프로세서에서 수행되는 보간 알고리즘의 고속화 역시 매우 중요하다. 본 논문에서는 레벨 1R에서 레벨 1G로 변환 시 기하 보정에 필요한 경량화된 심층 컨볼루션 신경망 기반 보간 기법에 대해 제안하였다. 제안한 기법은 위성 영상의 해상도를 2배 향상하며, 빠른 처리 속도를 위해 경량화된 심층 컨볼루션 신경망으로 딥러닝 네트워크를 구성하였다. 또한, panchromatic (PAN) 밴드 정보를 활용하여 multispectral (MS) 밴드의 영상 품질 개선이 가능한 피처 맵 융합 방법을 제안하였다. 제안된 보간 기술을 통해 획득한 영상은 기존의 딥러닝 기반 보간 기법에 비해 정량적인 peak signal-to-noise ratio (PSNR) 지표에서 PAN 영상은 약 0.4 dB, MS 영상은 약 4.9 dB 개선된 결과를 보여주었으며, PAN 영상 크기 기준 36,500×36,500 입력 영상의 해상도를 2배 향상된 영상 획득 시 기존 딥러닝 기반 보간 기법 대비 처리 속도가 약 1.6배 향상됨을 확인하였다.