• Title/Summary/Keyword: 고속 영상 촬영

Search Result 90, Processing Time 0.027 seconds

Rolling Shutter Distortion Stabilization using Accelerometer in Mobile Device (모바일 기기에서의 가속도 센서를 이용한 Rolling Shutter 왜곡 안정화 방법)

  • Choi, Hyeon-Cheol;Kim, Dong-Chul;Park, Young-Min;Woo, Woon-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.454-457
    • /
    • 2011
  • 현대의 휴대기기들은 대부분 저비용 저전력의 CMOS를 채용한 카메라를 사용한다. 일반적으로 CMOS 센서는 영상의 왜곡을 발생시키는 Rolling Shutter를 채용하여 촬영을 한다. Rolling Shutter에 의한 왜곡 현상을 보정하기 위해 기존의 방법들은 영상을 분석하여 카메라의 움직임을 추정한다. 하지만 증강현실과 같은 시스템에 있어 매우 중요한 실시간성을 보존하기 위해서는 더욱 빠르고 간결한 보정처리가 이루어져야 한다. 따라서 본 논문은 대부분의 모바일 기기에 장착되어있는 가속도 센서를 이용하여 왜곡현상을 고속 보정하는 방법을 제안한다.

Convex Gradient Coils for an Open Magnetic Resonance Imaging System (개방형 자기공명영상시스템을 위한 볼록형 경사자계코일)

  • 문찬홍;박현욱;조민형;이수열
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.129-136
    • /
    • 2000
  • 중재적 시술을 위한 자기공명영상(MRI)용 주자석은 수직 자계를 가지는 경우가 대부분인데 본 논문에서는 수직 자계를 발생하는 주자석에 장착할 수 있는 볼록형 경사자계코일을 소개하였다. 중재적 시술에 필요한 고속 촬영을 하기 위해서는 강한 경사자계 및 낮은 코일 인덕턱스가 필요한데 본 논문에서는 이를 효율적으로 실현하기 위해 경사자계코일을 볼록 곡면 위에 실현하였다. 기존 방법에서처럼 평면 위에 경사자계코일을 실현하지 않고 볼록 곡면 위에 실현함으로써 경사자계코일의 자계 강도 특성 및 코일 인덕턱스 특성을 향상시킬 수 있을 뿐만 아니라 중재적 시술을 위한 경사자계코일 내 공간을 충분히 확보할 수 있다. Prolate spheroid 좌표계에서 표현되는 경사자계코일 면을 정의하였고, 유한요소법을 이용한 볼록형 경사자계코일 설계 방법을 기술하였다. 또한 경사자계코일 면의 곡률에 따라 경사자계코일의 성능이 어떻게 변화하는지에 대한 결과를 제시하였다.

  • PDF

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

Interactive Virtual Anthroscopy Using Isosurface Raycasting Based on Min-Max Map (최대-최소맵 기반 등위면 광선투사법을 이용한 대화식 가상 관절경)

  • 임석현;신병석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2004
  • A virtual arthroscopy is a simulation of optical arthroscopy that reconstructs anatomical structures from tomographic images in joint region such as a knee, a shoulder and a wrist. In this paper, we propose a virtual arthroscopy based on isosurface raycasting, which is a kind of volume rendering methods for generating 3D images within a short time. Our method exploits a spatial data structure called min-max map to produce high-quality images in near real-time. Also we devise a physically-based camera control model using potential field. So a virtual camera can fly through in articular cavity without restriction. Using the high-speed rendering method and realistic camera control model, we developed a virtual arthroscopy system.

A High Performance License Plate Recognition System (고속처리 자동차 번호판 인식시스템)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1352-1357
    • /
    • 2002
  • This Paper describes algorithm to extract license plates in vehicle images. Conventional methods perform preprocessing on the entire vehicle image to produce the edge image and binarize it. Hough transform is applied to the binary image to find horizontal and vertical lines, and the license plate area is extracted using the characteristics of license plates. Problems with this approach are that real-time processing is not feasible due to long processing time and that the license plate area is not extracted when lighting is irregular such as at night or when the plate boundary does not show up in the image. This research uses the gray level transition characteristics of license plates to verify the digit area by examining the digit width and the level difference between the background area the digit area, and then extracts the plate area by testing the distance between the verified digits. This research solves the problem of failure in extracting the license plates due to degraded plate boundary as in the conventional methods and resolves the problem of the time requirement by processing the real time such that practical application is possible. This paper Presents a power automated license plate recognition system, which is able to read license numbers of cars, even under circumstances, which are far from ideal. In a real-life test, the percentage of rejected plates wan 13%, whereas 0.4% of the plates were misclassified. Suggestions for further improvements are given.

Improvement of Fourier Transform Arteriography by Use of Ramped RF Profile and Dual Projections (경사 윤곽의 고주파 펄스와 이중 투사법에 의한 Fourier 변환 동맥 혈관 촬영법의 성능 향상)

  • Jung, K. J.;Kim, I. Y.;Lee, M. W.;Yi, Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2002
  • The Fourier transform arteriography (FTA) exploits the periodic variation of arterial flow velociety of arterial flow velocity in stnchronized with cardiac cycles. This technique is intrinsically unique compared to other modern techniques. This technique separates the arteries from the veins using the pulsatile arterial flow without using the presaturation RF pulses. Therefore, it has less RF deposition and is free from the dark band artifacts that can arise from retrograde flow and curved arteries. Furthermore, it is free from the artifacts induced by eddy currents. However, there are some drawbacks such as a single projection view and the saturation of arteries at the end of an imaging slab. These drawbacks are circumvented by applying recently developed techniques. The fast gradient switching capability of modern MRI systems enabled us to incorporate dual projection views into the conventional FTA sequence without increasing the repetition time. In addition, signals from the distal arteries were enhanced by use of a ramped RF pulse and therefore the distal arteries were less saturated. By use of the FTA sequence with dual projection views and the ramped RF pulse, we acquired the sagittal and coronal projection views of femoral arteriograms simultaneously with more enhanced signals of distal arteries than the conventional FTA.

  • PDF

Image Quality and Dose Assessment According to Examination Mode during Head CT Examination (두부 CT 검사 시 검사 모드에 따른 화질 및 선량평가)

  • Gang, Heon-Hyo;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.437-444
    • /
    • 2021
  • To evaluate the usefulness of Volume Axial Mode by comparing analyzing the exposure dose of the patients and the quality of each images from CT images obtained from high pitch mode using the local phantom or volume axial mode to determine the usefulness of he volume axial mode in diagnosing the head and cervical disease in adults. High Pitch Mode, Helical Mode, and Volume axial Mode as adult phantom were tested according to 70 kVp, 80 kVp, and 100 kVp tube voltages during an adult frontal CT scans. The equipment used was GE's Revolution (GE Healthcare, Wisconsin USA) model and iMED X-ray Phantom. The exposure dose of phantom was compared using the images obtained from each protocol, and the image quality was compared by calculating SNR and CNR by setting ROI on each image. When examined using Volume Axial Mode, the exposure dose of phantom was measured 17.12% lower than Helical Mode, 5.35% lower than High Pitch Mode, and both SNR and CNR were improved. Volume Axial Mode is a useful test that reduces investigation time without table movement using high speed rotary scanner, and in which exposure dose is reduced and image quality is improved by acquiring images in a short time of 0.28 seconds of phantom than using High Pitch Mode and Helical Mode. In addition, the fast testing time of Volume Axial Mode can be seen as the biggest advantage CT scans of emergency patients or patients with physical discomfort.

Analysis of Eddy Current Effect in Magnetic Resonance Imaging Using the Finite Element Method (유한요소법에 의한 자기공명영상시스템에서의 와전류 영향 분석)

  • Lee, Jeong-Han;Gang, Hyeon-Su;Jo, Min-Hyeong;Mun, Chi-Ung;Lee, Gang-Seok;Lee, Su-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 1999
  • Eddy current in MRI systems degrades gradient field linearity and distorts gradient waveform. When the waveform distortion is spatially variant, it is very difficult to perform special imaging techniques such as the echo planar imaging technique or the fast spin echo imaging technique. In this study, we have developed a new technique to estimate the distorted gradient waveforms at any points inside the imaging region using the finite element method. After obtaining the eddy-current-effect transfer function, which represents magnitude and phase characteristics of the gradient field at a particular point, we have used the transfer function to estimate the actual gradient waveforms at the point. To verify the proposed technique, we have compared the estimated gradient waveforms with the measured ones.

  • PDF

Fast MR Imaging Technique by Using Locally-Linear Gradient Field (부분적인 경사자계를 이용한 고속 자기공명 영상촬영기법)

  • 양윤정;이종권
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.93-98
    • /
    • 1996
  • The purpose of this paper is to propose a new localized imaging method of reduced imaging time luting a locally-linear gradient. Since most fast MR(Magnetic Resonance) imaging methods need the whole $\kappa$-space(Spatial frequency space) data corresponding to the whole imaging area, there are limitstions in reducing the minimum imaging time. The imaging method proposed in this paper uses a specially-made gradient coil generating a local ramp-shape field and uniform field outside of the imaging areal Conventional imaging sequences can be used without any RF/gradient pulse sequence modifiestions except the change in the number of encoding steps and the field of view.

  • PDF

Augmented Reality HUD System Using High-Speed Stereo Matching and 3D Mapping Algorithm (고속 스테레오 매칭과 3차원 매핑 알고리즘을 사용한 증강현실 HUD 시스템)

  • Kwon, Byoung-moo;Lee, Kang-hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.253-255
    • /
    • 2014
  • 본 논문에서는 스마트카의 핵심과제인 텔레매틱스와 자동차의 기술융합을 통해 더욱더 향상된 운전자의 안전과 편의를 제공하는 차량 HMI(Human Machine Interface) 시스템을 제안한다. 이 시스템은 차량에 장착된 카메라로 촬영한 도로의 이미지를 실시간으로 레퍼런스 데이터베이스와 매칭하여 도로를 인식하는 기술을 사용한다. 매칭된 레퍼런스 이미지와 운전자 맞춤 텔레매틱스 정보를 합성한 증강현실 영상을 운전자의 시선에 보이는 실제 도로와 지형의 모양에 맞추어 HUD(Head-Up Display)에 투사하는 매핑 기술을 통해 운전자가 운전 중 항시 도로에 집중하여 안전운행을 할 수 있도록 고안하였다.

  • PDF