• Title/Summary/Keyword: 고속 열차 주행

Search Result 200, Processing Time 0.029 seconds

Analysis of Trial Test for ATP On-board Equipment of Tilting Train (틸팅열차 ATP 차상장치의 시운전시험 분석)

  • Baek, Jong-Hyen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3911-3916
    • /
    • 2010
  • In this paper we describe contents and results on running test for ATP on-board equipment, which has propelled as one of the research projects, so called, "Reliability assessment and operation technology development for Korean-type tilting trains" in order to ensure the safety and operation efficiency of tilting trains. We developed tilting trains for the speed-up of conventional lines and for the passenger service improvement where the KTX is not available. And we made progress the operation trial test in the 120,000 km distance with the use of ATS equipment, used in existing lines, for the purpose of the reliability assessment of the developed tilting trains. We decided to accelerate the speed for more than 200km/h with respect to the 6 existing lines including Jungang-line and Chungbuk-line where KTX has not operated. According to this decision, Train control system is to be changed from ATS to ATP. We should have installed an ATP on-board unit in tilting trains and verified the operational suitability, therefore we installed the same ATP on-board unit on tilting trains as that used in the ATP construction project on Gyeongbu-line and Honam-line, and verified that the function and performance of the installed ATP on-board unit conformed to the tilting trains operation.

Evaluation of Deformation Characteristics for Bridge/Earthwork Transition Reinforcement Methods Considering Moving Load (이동하중을 고려한 교량/토공 접속부 보강방안별 변형특성 평가)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Kang, Tae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.298-303
    • /
    • 2010
  • The transition zone of the railway is the section which roadbed stiffness is suddenly varied like as tunnel-earthwork, bridge-earthwork and concrete track-ballasted track. There are about 450 tunnel-bridge transition sections on Kyungbu high-speed railway line. It is very important to pay careful attention to construction of these transition zones, in order to secure the train running safety. So, we developed a finite element model of the moving wheel loading to simulate the behavior of bridge-earthwork transitions in this paper. The most distinctive characteristics of the model proposed is to simulate the real wheel behavior on rail. And the main analysis object is to evaluate and compare the deformation characteristics of the transition zone according to the reinforcement methods and length of transition zone which is adopted to high-speed railway. Based on the analysis results, we assessed the effect of the reinforcements on the transition zone of high-speed railway.

Determination of Upper Limit of Rail Pad Stiffness for Ballasted and Concrete Track of High-Speed Railway Considering Running Safety (주행 안전을 고려한 고속철도 자갈궤도 및 콘크리트궤도 레일패드의 강성 상한 결정)

  • Yang, Sin-Chu;Jang, Seung-Yup;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.526-534
    • /
    • 2011
  • In this study, proposed is the methodology to determine the upper limit for stiffness of rail pad for the ballasted and concrete track in high-speed railway in the viewpoint of running safety, considering the dynamic characteristics of train and track and the operation environment. For the track irregularity, one of the most important input parameters for traintrack interaction analysis, the reference vertical track irregularity PSDs(power spectral densities) for the ballasted and concrete track in a wide range of frequencies were proposed based on those presented in France and Germany and that obtained from the measured data at Kyeong-Bu 1st phase high-speed railway line. Using these reference PSD models, the input data for the vertical track irregularity data were regenerated by random generation process, and then, the wheel load reduction rates according to the stiffness of the rail pads have been calculated by the train-track interaction analysis technique. Finally, by comparing the wheel load reduction rates calculated with the derailment criteria prescribed in the Korean standards for railway vehicle safety criteria, the upper limits for the stiffness of rail pad have been proposed.

Numerical Study of Reduction of External Pressure Variation and Micro-Pressure Wave for high-speed train in tunnel (고속열차의 터널 주행시 실외 압력 변화 및 미기압파 저감을 위한 수치해석적 연구)

  • Lee, Jung-Uk;Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.158-164
    • /
    • 2011
  • When a train passes a conventiaonl tunnel at high speed, external pressure variation problem arises. It is known that this issue can be reduced by control the tunnel length. We studied the variances of external pressure variation within the tunnel, by altering length of the dummy tunnel duct. We also studies the variances of micro-pressure waves at the exit of tunnel, by altering surface area of dummy tunnel duct. For analyzing this train-tunnel relation problem, axisymmetric steady compressible flow solver was used.

  • PDF

Verification Study of Train/Bridge Interaction Analysis through Field Tests of a High Speed Railway Bridge (고속철도 교량의 속도별 주행시험을 통한 교량/열차 상호작용해석의 검증)

  • Kim, Sung-Il;Lee, Joo-Beom;Kim, Hyun-Min;Lee, Hee-Up
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1555-1561
    • /
    • 2011
  • The dynamic behavior of a bridge under moving loads has been investigated over many years. Especially, with the introduction of High Speed Railway, numerous theoretical studies on the interaction problem between bridges and trains are carried out. In the present study, advanced bridge/train interaction analyses are performed and compared with field tests of a simply-supported 40m long PSC box girder bridge of Kyung-Bu High Speed Railway. Vertical displacements and vertical accelerations of a bridge with increasing speeds are analyzed. In addition, wheel load reduction rates and accelerations of a car-body of the train are investigated for a study of appropriateness of traffic safety criteria of bridge design specification.

  • PDF

An Experimental Evaluation for an Abnormal Vibration on Running of the High Speed Train (고속열차 주행중 이상진동에 대한 시험적 평가)

  • Yang, Hee-Joo;Woo, Kwan-Je;Son, Byoung-Gu;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2263-2268
    • /
    • 2011
  • THE VIBRATION MODE OF RAILWAY VEHICLE IS DIFFICULT TO FIND OUT THE CHARACTERISTICS OF MOTION DURING THE OPERATION ON THE TRACK BECAUSE THESE HAPPEN TO INDEPENDENCE OR DUPLICATION MOTION CAUSED BY VEHICLE, WHEEL/RAIL INTERACTION, TRACK IRREGULARITY AND FAILURE OF THE SUSPENSION & POWER TRANSMISSION DEVICE ETC. IT IS NAMED AN ABNORMAL VIBRATION THAT THE VIBRATION, WHICH WAS PASSED THE PRIMARY AND SECONDARY SUSPENSION, IS AFFECTED TO THE PASSENGER OR DRIVER WITHOUT DAMPING. THIS PAPER DESCRIBES AN EXPERIENCE EVALUATION TO FIND OUT THE CAUSE OF AN ABNORMAL VIBRATION WHICH WAS HAPPEN AT THE CAB OF POWER CAR IN KTX-SANCHEON TRAINSET WHEN ON RUNNING AT HIGH SPEED ZONE.

  • PDF

Running Performance Analysis for the High-speed Electric Multiple Unit 400km/h Experimental (차세대 고속열차 주행성능해석)

  • Lee, Tae-Hyung;Park, Choon-Soo;Han, In-Soo;Choi, Sung-Hoon;Kim, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.478-479
    • /
    • 2009
  • The HEMU-400X(High-speed Electric Multiple Unit 400km/h eXperimental) project starts in 2007. It is required to analysis and simulate the train performance throughout the project life cycle for a successful completion of the project. This paper is devoted to the development of a train performance analysis model for the high-speed electric multiple unit 400km/h experimental. The model consist of running resistance model, train model, traction model and braking model. So, this paper represents the results of the train performance analysis.

  • PDF

Train Performance Simulation for Korea High Speed Train (한국형 고속전철 열차 주행성능 해석)

  • Lee, Tae-Hyung;Park, Choon-Soo;Mok, Jin-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.275-277
    • /
    • 2003
  • Computer aided simulation is becoming an essential part in planning, design, and operation of railway systems. To determine the adequate performance and specification of railway system, it is necessary to calculate rolling stock's performance such as distance, speed, power etc when train's running. This paper presents result of train performance simulation using the program that developed in advance for Korea high speed train. To verify result of simulation, we have compared that with experiment data.

  • PDF

Measurement and analysis of Pressure fluctuation by high speed train passing through tunnels in conventional line (기존선 터널 주행시의 고속열차 차체가 받는 압력변동 계측 및 분석)

  • Lee Uk-Jae;Park Choon-Soo;Seo Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.883-888
    • /
    • 2004
  • Pressure waves are generated when high speed train runs through the tunnels. These pressure waves not only affect passenger's health, but also can cause fatigue failures on the vehicle structure. The current high speed train should run on the conventional lines. In this study, pressure fluctuations by the high speed trains such as G7 Korea High Speed Train and Korea Train eXpress are measured in the cabin and the carbody surface when they pass through the tunnels. The measured results are analyzed and the related parameters are investigated.

  • PDF

Numerical Analysis of 3-Dimensional Unsteady Flow Around the High Speed Train (고속으로 주행하는 열차 주위의 3차원 비정상 유동장 해석)

  • Ha, Seong-Do
    • 연구논문집
    • /
    • s.27
    • /
    • pp.15-34
    • /
    • 1997
  • The 3-dimensional unsteady compressible flows around the high speed train have been simulated for the train entering a tunnel and for passing another train. The simulation method employs the implicit approximation-factorization finite difference algorithm for the inviscid Euler equations in general curvilinear coordinates. A moving grid scheme is applied in order to resolve the train movement relative to the tunnel and the other train. The velo-city and pressure fields and pressure drag are calculated to study the effects of tunnel and the other train. The side directional force which is time dependent is also computed for the passing train. Pressure distribution shows that the compression wave is generated in front of the train noise just after the tunnel entrance and proceeds along the inside of tunnel.

  • PDF