• Title/Summary/Keyword: 고속 열차 주행

Search Result 200, Processing Time 0.023 seconds

Rail-Stress Analysis of High-Speed Railway Bridges using Long Rails in Low and Moderate Seismic Areas (중약진 지역에서의 고속철도 연속교량 장대레일의 응력 해석)

  • Koh, Hyun-Moo;Kim, Yong-Gil;Choo, F. Jinkyo;Kwon, Ki-Jun;Kang, Junwon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.352-359
    • /
    • 2003
  • 철도나 고속철도 교량에 사용되는 장대레일은 차량에 의한 동적충격의 완화, 주행시 승차감의 향상과 같은 장점을 가져온 반면에, 인접한 교량의 연결부에서 레일과 교량 상부구조간의 거동 불일치로 인해 레일에 부가적인 응력을 발생시킨다. 이러한 부가적인 레일응력과 지반운동의 특성에 따른 구조적 응답의 민감도 및 열차의 안전한 정지를 고려하여, 지진 발생시 고속철도교량의 장대레일 응력을 해석하기 위해 레일의 재료비선형성, 지반운동의 위상차 등을 고려한 비선형 시간이력해석 방법을 제시하였다. 그리고 우리나라의 여러 지반조건을 고려하고 고속철도의 대표적인 연속교량 모델에 적용하여 제시한 방법의 타당성을 검토하였다.

  • PDF

Verification of bridges Design criteria for Continuous PSC Box Bridge of High Speed Railway Using Field Test (고속철도 연속 PSC Box 교량에 적용한 설계기준의 현장계측에 의한 검증)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • The aim of this paper is to verify the dynamics stability of the continuous PSC Box bridges on the high-speed Kyoung-bu railway when a high-sped train runs through it. An experimental study was carried out to investigate the dynamic behaviors of the PSC Box railway bridge, which had ben designed based on dynamic design criteria. As a result, it was determined that PSC Box railway bridges possess enough dynamics stability for use by high-speed trains. According to the result of a field test (dynamics measuring analysis) that was conducted, an application of the natural frequency of train speed and the adjustment of the bridge's span length will allow one to come up with a more economical and suitable bridge design. Furthermore, it was found that the continuous control of the bridge's dynamic behavior and the bridge's maintena nce require the recording of data. The results of this study are very important in evaluating the structural stability of high-speed line bridges.

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

Wave Propagation on a High-speed Railway Embankment Using a Pile-slab Structure (파일슬래브구조가 적용된 고속철도 토공노반에서의 진동 전파)

  • Lee, Il Wha;Lee, Sung Jin;Lee, Su Hyung;Lee, Kang Myung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.278-285
    • /
    • 2013
  • The suppression of residual settlement is required on earthwork sections as concrete track is introduced. Use of pile-slab structure is one of the settlement restraining methods applied on soft ground. The slab distributes the upper embankment load and piles transfer the load from the slab to the stiff ground. While this method is very effective in terms of load transfer, it has not yet been established for dealing with the vibration transfer effects and interaction characteristics between a structure and the ground. It is possible that vibration caused by a moving train load is propagated in the upper embankment, because the slab acts as a reflection layer and waves are multi-reflected. In this present paper, wave propagation generated by a moving train load is evaluated in the time and frequency domains to consider a roadbed structure using an artificial impact load and field measured train load. The results confirmed the wave reflection effect on the pile-slab structure, if the embankment height is sufficient, vibration propagation can be stably restrained, whereas if the height is not sufficient, the vibration amplitude is increased.

Analysis of Design Parameters for Earthwork/Bridge Transition Structure for Ultra-High Speed Running (초고속 주행시 교량/토공 접속부 보강방안의 설계변수 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Lee, Kang-Myung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.117-126
    • /
    • 2015
  • The development of railway roadbed for 600km/h train speed level is very difficult because unpredictable static and dynamic interaction occurs between the ultra-high speed train and the infrastructure. Especially, an earthwork-bridge transition zone is a section in which influential factors react, such as bearing capacity, compression, settlement, drainage, and track irregularity; these interactions can include complicated dynamic interaction. Therefore, if static and dynamic stability are secured in transition zones, it is possible to develop roadbeds for ultra-high speed railways. In the present paper, design parameters for transition reinforcement applied to present railway design criteria are analytically examined for ultra-high speed usage on a preferential basis. Design parameters are the presence of reinforcing materials, geometric shape, stiffness of materials, and so on. Analysis is focused on the deformation response of the track and running stability at ultra-high speed.

A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads Considering Running Safety (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim, Jeong-il;Yang, Sin-Chu;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.299-309
    • /
    • 2006
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

A Study on the Wheel Wear of High Speed Train Running on the Conventional Line (경부고속열차의 기존선 주행시 차륜마멸특성에 관한 연구)

  • 강부병;이희성
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.187-194
    • /
    • 2003
  • This paper describes the characteristics of wheel wear of high speed train running on the conventional line. Conventional line has many curved tracks that cause severe wheel flange wear. The influences of lubrication, cant deficiency, curve radius on wheel wear are also described considering the operation performance of the highspeed trainset. A method of calculation using contact patch work model is presented for determination of the evolution by wear of railway wheels.

Characteristics of the Running behavior and Safety for HEMU-400X due to Vertical Alignment (고저틀림에 따른 차세대고속열차의 주행안전성 영향 분석)

  • Choi, Il-Yoon;Park, Chan-Kyoung;Um, Ju-Hwan;Lim, Yun-Sik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.58-63
    • /
    • 2010
  • HEMU-400X train have been developed and will be operated over 350km/h. In this paper, the influence of vertical alignment on running behavior and safety for HEMU-400X train was instigated by numerical analysis. The wavelength and amplitude of vertical alignment were considered in scenario of this numerical analysis. This research is based on just numerical analysis and the final result which include measurement will be published in the future.

  • PDF

Substation Power Quality Test of Hanvit 350 running (한국형 고속열차 주행시 전철변전소 전력품질 시험)

  • Lee, Tae-Hyung;Park, Choon-Soo;Im, Young-Chan;Choi, Seong-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1479-1481
    • /
    • 2007
  • It is important to evaluate the power quality at a substation when a test train is running. Especially, the Korea Electric Power Company(KEPCO) restrict the power quality generated from the electrical train within limited value. So, this paper represents the results of the power quality test when Hanvit 350 is running at the KTX high speed line and the assessment.

  • PDF

A study on the wheel wear of highspeed train running on the conventional line (경부고속열차의 기존선 주행시 차륜마멸특성에 관한 연구)

  • 강부병;이희성;왕영용
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.135-142
    • /
    • 2000
  • This Paper describes a characteristics of wheel wear of high speed train running on the conventional line. Conventional line has many curved tracks that cause severe wheel flange wear. The influences of lubrication, cant deficiency, owe radius on wheel wear are also described considering the operation performance of the highspeed trainset. A method of calculation using contact patch work model is presented far determination of the evolution by wear of railway wheels.

  • PDF