• Title/Summary/Keyword: 고속철도터널

Search Result 216, Processing Time 0.029 seconds

Analysis of Aerodynamic Characteristics for determination of tunnel cross section in Honam high speed railway (호남고속철도 터널 단면선정을 위한 공기역학적 특성 분석)

  • Kim, Seon-Hong;Moon, Yeon-Oh;Seok, Jin-Ho;Jo, Hyeong-Jae;Yoo, Ho-Sik;Choi, Jeong-Hwan;Rim, Hyoung-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.313-336
    • /
    • 2007
  • Unlike a conventional railway system, a high-speed rail system experiences various aerodynamic problems in tunnel sections. Trains running at a high speed in a small tunnel, when compared with the open field, face significant air pressure, resulting in reduced operating stability and fast change in pressure inside the tunnel. These phenomena further cause some unexpected problems such as the passengers onboard feeling an aural discomfort and an impulsive noise at the tunnel exit. To solve these problems, this paper introduces analysis of aerodynamic characteristics for determination of tunnel cross section. The optimum cross-section that satisfies the criteria of aural discomfort was reviewed through lots of numerical simulation analysis. Also, the pressure inside the passenger car of a train operating on Kyungbu HSR line was measured, and the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 Tunnel. At the same time, a test of train operation model was performed and then the measurement results and test results were compared to verify that various parameters used as input conditions for the numerical simulations were appropriate.

  • PDF

A study on the optimum cross-section design that satisfies the criteria of aural discomfort in Honam high speed railway tunnel (이명감 특성을 고려한 호남고속철도 터널단면 설정에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.19-36
    • /
    • 2007
  • When the trains runs at a high speed in the tunnel, passengers feel a pain in the ear that fast pressure fluctuation inside the tunnel being delivered with pressure fluctuation inside the passenger car. These phenomena are called "aural discomfort". Aural discomfort increase the passengers' uncomfort so that it is decreased a service level and serious case, it is able to damage the ear of the passenger. therefore aural discomfort must be considered the high-speed railroad tunnel cross-section design. To solve the problem of aural discomfort in a railway tunnel, some countries have standards on aural discomfort. It has been studied that different countries have different standards on aural discomfort. For that reason, the criteria of aural discomfort was reviewed through the standards of Kyungbu HSR line and different countries in this paper. And then Numerical Analysis of the Characteristics with tunnel cross-section change has been used for the selection of the optimum cross-section of Honam. The numerical analysis results were compared to field test results in order to verifying the reliability of the numerical analysis.

  • PDF

A Study on the Loss and Damage Ratio of Railroad Tunnel Maintenance Monitoring Sensor (철도터널 유지관리 계측센서의 손망실율 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.262-270
    • /
    • 2018
  • Purpose: This paper investigates and analyzes the loss and damage ratio of maintenance monitoring sensor in metropolitan and high speed railroad tunnel in Korea and abroad. Method: After 5~6 years from the installation, the maintenance monitoring sensor on metropolitan transit tunnels showed the loss and damage ratio from 14.2% to 14.8% in Seoul metro line no. 5, 6, 7, 9, and 13.9% in UK channel tunnel. Based on the result, 15% is thought to be a proper set for the elapsed years, which is 5 years from the installation. Results: The maintenance monitoring sensor on high speed railroad tunnels showed the loss and damage ratio of 60.9% in Ho-Nam high speed railroad on 1 stage after 3 ~ 5 years from the installation, which was approximately 4 times as high as that of Seoul metro line no. 5, 6, 7, 9. Conclusion: Kyung-Bu high speed railroad on 2 stage, after 8~10 years from the installation, showed the loss and damage ratio of 66.8%. Based on the result, it can be inferred that the loss and damage ratio increases drastically after 5~10 years from the installation. Therefore, it is necessary to study on the loss and damage ratio of long term elapsed years, especially more than 10 years from the installation.

Case Study on the detailed standard setting and Application for QRA in Honam high speed railway tunnel (호남고속철도터널의 정량적 위험도 분석(QRA)을 위한 세부기준수립 및 적용사례)

  • Kim, Seon-Hong;Moon, Yeon-Oh;Seok, Jin-Ho;Kim, Ki-Lim;Kim, Chan-Dong;Yoo, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.249-260
    • /
    • 2008
  • Although the accident rate is lower than the road tunnel, fire in railway tunnel can bring large damage of human life. In the high speed railway tunnel, the possibility of the railway-disaster (fire) is growing in consideration of the speedy railway and the tunnel length. For that reason, MLTM (Ministry of Land, Transport and Maritime Affairs) published "Rules about the Safety Standard of Railroad (2005.10.27)" and "The Detailed Safety Standard of Railroad (2006.9.22)". According to those, QRA(Quantitative Risk Analysis) technique is recommended to be applied to railway tunnel design which is longer than 1km for assuring the safety function and estimating the risk. However, it is difficult to perform the disaster prevention design due to lack of the detailed standards about event scenario, fire intensity, incidence rate of accidents etc. Therefore, This paper introduces the case of tunnel design for disaster prevention of the Honam high speed railway including the detailed standards of QRA and reasonable safety facilities.

  • PDF

고속철도의 소음발생과 그 대책

  • 박진모;최강윤
    • Journal of KSNVE
    • /
    • v.3 no.2
    • /
    • pp.95-102
    • /
    • 1993
  • 고속철도를 포함한 철도운행에 있어서 소음문제는 중요한 환경문제의 하나 이다. 지금까지 철도소음에 관한 국내에서의 연구는 철도소음 기준과 관련된 일부 연구를 제외하고는 거의 없는 상황이다. 앞으로 고속철도의 성공적인 운행을 위하 여는 선로변에서의 소음저감 대책으로 지형과 궤도조건에 따른 소음피해 예측과 소음원 특성을 고려한 효과적인 방음설계에 대한 연구가 필요하다. 또한 경부고속 철도 노선에 터널이 많으므로 터널 미기압파의 발생과 그대책에 대한 연구가 필요할 것으로 생각된다. 이와 더불어 국산화 차량 개발을 위하여 차체와 판토그래프에서의 공력소음감소를 위한 공력해석, 전동소음과 구조물 소음 감소를 위한 차륜과 쾌도의 개선, 추진장치와 보조장치의 소음제어설계 등 각각의 소음발생원에 대한 이해와 소음저감 기술의 개발이 필요하다.

  • PDF

Sound Insulation Strategy for the Tunnel Noise in a High Speed Train (고속철도차량의 터널 소음을 위한 차음 전략)

  • Kim, Seock-Hyun;Lee, Ho-Jin;Kim, Jung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.315-322
    • /
    • 2012
  • In a tunnel, interior noise of a high speed train increases by 5dB~7dB. The reason is that the sound intensity of the acoustic field in the tunnel significantly increases by the reflected waves occurred in the closed space. Especially, the incident acoustic power largely increases on the outside of the compartment side panel and large transmission of noise is available through the side panel and the glass window. In this paper, the sound insulation strategy in the tunnel is proposed for the next generation high speed train under development. Specimens of the aluminum extruded panels, layered panels and double glazed window are manufactured and intensity transmission loss is measured according to ASTM E2249-02. Based on the measured data, problems in the sound insulation performance are diagnosed and the sound insulation strategy is reviewed on each panel and layered structures.

A study on the characteristics of Micro Pressure wave for the optimum cross-section design in Honam high speed railway (호남고속철도 터널 단면선정을 위한 미기압파 특성 분석에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.51-68
    • /
    • 2008
  • When the train enters into a tunnel a high speed, pressure waves are generated inside the tunnel. The pressure waves at propagate in a form of compression wave toward the tunnel exit and a fraction of the compression waves that arrives at the exit of the tunnel are discharged to outside of the tunnel and the remainder is reflected into the tunnel as expansion waves. The compression waves emitted from the tunnel does not radiate in a specific direction but in all directions. If the amplitude of the compression wave is great, it causes noise and vibration, and it is called "Micro-Pressure Wave." "Micro-Pressure Wave" must be considered as a decision for the optimum tunnel cross-section as the amplitude of the compression wave depends on train speed, tunnel length, area of tunnel and train. Therefore, this paper introduces the case study of Micro-Pressure Wave characteristics for determination of tunnel cross section in Honam high speed railway, the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 tunnel in Kyungbu HSR line. At the same time. a test of train operation model was performed and then the measurement results and test results were compared to verify that the various parameters used as input conditions for the numerical simulations, which were appropriate. Also a model test was performed, in order to analysis of the Micro-Pressure Wave Mitigation Performance by Type of Hood at Entrance Portal.

  • PDF

Review on the detailed standards for Quantitative Risk Analysis in High Speed Railway Tunnels (고속철도 터널의 정량적 위험도 분석(QRA)을 위한 세부기준에 관한 고찰)

  • Choi, Won-Il;Choi, Jeong-Hwan;Moon, Yeon-Oh;Kim, Seon-Hong;Yoo, Ho-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.393-407
    • /
    • 2008
  • To protection of fire accident and to minimize danger of spreading the disaster. in railway tunnel, MCT (the Ministry of Construction and Transportation) published "Rules about the Safety Standard of Railroad (2005.10.27)" and "The Detailed Safety Standard of Railroad (2006.9.22)". QRA(Quantitative Risk Analysis) results are applied to establish the fire protection facilities in railway tunnel so that institute the reasonable application about the fire safety facilities However, it is difficult to perform the fire safety design due to lack of the detailed standards about event scenario, fire intensity, incidence rate of accidents etc. Therefore, This paper introduces the practical method about detailed standards of QRA.

Stability Analysis of High Speed Railway Tunnel Passing Through the Abandoned Mine Area (폐광지역을 통과하는 고속철도터널의 안정성 평가)

  • 장명환;양형식;정소걸
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.147-154
    • /
    • 2000
  • The influence of the mined-out caves on the stability of the high speed railway tunnel was investigated with a series of geological logging and in-situ tests on the one hand, and with the rock mass classification using the multiple regression analysis on the other hand. The rock mass in this area can be classified as 'fair', and the condition of the discontinuities plays the most important role in the classification of the rock mass. The results of the analysis obtained by the FLAC showed that the western part of the tunnel locating at 50m above the mine cavities could be affected by subsidence associated with a considerable deformation, the magnitude of which might depend on the properties of the rock mass. Key word : multi regression analysis, subsidence, mine cavities

  • PDF