• Title/Summary/Keyword: 고빈도-GARCH

Search Result 5, Processing Time 0.016 seconds

Multivariate volatility for high-frequency financial series (다변량 고빈도 금융시계열의 변동성 분석)

  • Lee, G.J.;Hwang, Sun Young
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.169-180
    • /
    • 2017
  • Multivariate GARCH models are interested in conditional variances (volatilities) as well as conditional correlations between return time series. This paper is concerned with high-frequency multivariate financial time series from which realized volatilities and realized conditional correlations of intra-day returns are calculated. Existing multivariate GARCH models are reviewed comparatively with the realized volatility via canonical correlations and value at risk (VaR). Korean stock prices are analysed for illustration.

Stock return volatility based on intraday high frequency data: double-threshold ACD-GARCH model (이중-분계점 ACD-GARCH 모형을 이용한 일중 고빈도 자료의 주식 수익률 변동성 분석)

  • Chung, Sunah;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.221-230
    • /
    • 2016
  • This paper investigates volatilities of stock returns based on high frequency data from stock market. Incorporating the price duration as one of the factors in volatility, we employ the autoregressive conditional duration (ACD) model for the price duration in addition to the GARCH model to analyze stock volatilities. A combined ACD-GARCH model is analyzed in which a double-threshold is introduced to accommodate asymmetric features on stock volatilities.

Volatility Computations for Financial Time Series: High Frequency and Hybrid Method (금융시계열 변동성 측정 방법의 비교 분석: 고빈도 자료 및 융합 방법)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1163-1170
    • /
    • 2015
  • Various computational methods for obtaining volatilities for financial time series are reviewed and compared with each other. We reviewed model based GARCH approach as well as the data based method which can essentially be regarded as a smoothing technique applied to the squared data. The method for high frequency data is focused to obtain the realized volatility. A hybrid method is suggested by combining the model based GARCH and the historical volatility which is a data based method. Korea stock prices are analysed to illustrate various computational methods for volatilities.

A threshold-asymmetric realized volatility for high frequency financial time series (비대칭형 분계점 실현변동성의 제안 및 응용)

  • Kim, J.Y.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.205-216
    • /
    • 2018
  • This paper is concerned with volatility computations for high frequency time series. A threshold-asymmetric realized volatility (T-RV) is suggested to capture a leverage effect. The T-RV is compared with various conventional volatility computations including standard realized volatility, GARCH-type volatilities, historical volatility and exponentially weighted moving average volatility. High frequency KOSPI data are analyzed for illustration.

Functional ARCH (fARCH) for high-frequency time series: illustration (고빈도 시계열 분석을 위한 함수 변동성 fARCH(1) 모형 소개와 예시)

  • Yoon, J.E.;Kim, Jong-Min;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.983-991
    • /
    • 2017
  • High frequency time series are now prevalent in financial data. However, models need to be further developed to suit high frequency time series that account for intraday volatilities since traditional volatility models such as ARCH and GARCH are concerned only with daily volatilities. Due to $H{\ddot{o}}rmann$ et al. (2013), functional ARCH abbreviated as fARCH is proposed to analyze intraday volatilities based on high frequency time series. This article introduces fARCH to readers that illustrate intraday volatility configuration on the KOSPI and the Hyundai motor company based on the data with one minute high frequency.