• Title/Summary/Keyword: 고분자 수지

Search Result 468, Processing Time 0.021 seconds

Study on the Coefficient of Thermal Expansion for Composites Containing 2-Dimensional Ellipsoidal Inclusions (2차원 타원형의 충전제를 함유하는 복합재료의 열팽창 계수 연구)

  • Lee, Kee-Yoon;Kim, Kyung-Hwan;Jeoung, Sun-Kyoung;Jeon, Hyoung-Jin;Joo, Sang-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.160-167
    • /
    • 2007
  • This paper proposes a model for the solutions predicting the coefficient of thermal expansion of composites including fiber-like shaped$(a_1>a_2=a_3)$ and disk-like shaped$(a_1=a_2>a_3)$ inclusions like two dimensional geometries, which was analyzed by one axis and a single aspect ratio, $(\rho_\alpha=a_1/a_3)$. The analysis follows the procedure developed for elastic moduli by using the Lee and Paul's approach. The effects of the aspect ratio on the coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The longitudinal coefficients of thermal expansion $\alpha_{11}$ decrease and approach the coefficient of thermal expansion of filler, as the aspect ratios increase. However, the transverse coefficients of thermal expansion $\alpha_{33}$ increase or decrease with the aspect ratios.

Effects of Thermal and Electrical Conductivity of Al(OH)3 Functionalized Graphene/Epoxy Composites by Simple Sol-Gel Method (졸-젤 법을 이용한 Al(OH)3 처리된 그래핀/에폭시 복합체의 열 및 전기전도 특성 분석)

  • Kim, Ji-Won;Im, Hyun-Gu;Han, Jung-Geun;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Functionalized graphene/epoxy composites were prepared to miprove thermal conductivities of epoxy composites and to maintain electrical insulating property. Graphene oxide (GO) was prepared using Hummers method, and then GO was reacted with aluminum isopropoxide to functionalize $Al(OH)_3$ layer onto GO surface by a simple sol-gel method (Al-GO). GO and Al-GO were characterized by X-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. The analyses confirm that GO was coated with a large and dense coverage of $Al(OH)_3$. GO and Al-GO (1 and 3 wt%) were embedded in bisphenol A (DGEBA) to investigate the effects of electrical insulating property. Electrical resistivity showed that Al-GO had better insulating property than GO. Further, the thermal conductivity of GO and Al-GO/epoxy composites was higher than that of neat epoxy resins. In particular, the thermal conductivity of Al-GO/bisphenol F (DGEBF) improved by 23.3% and Al-GO/DGEBA enhanced by 21.8% compared with pure epoxy resins.

An Epidemiological Study on the Industrial Injuries among Metal Products Manufacturing Workers in Young-Dung-Po, Seoul (일부 금속 및 기계제품 제조업체 근로자들의 산업재해($1980{\sim}1981$)에 관한 조사)

  • Lee, Jung-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.15 no.1
    • /
    • pp.187-196
    • /
    • 1982
  • The followings are the results of the study on industrial accidents occurred at 12 factories manufacturing metal products during the period of 2 years from January 1980 to December 1981 in the area of Yong-Dung-Po in Seoul. The results of the study are as follows: 1. The incidence rate of industrial injuries was 45.7 per 1,000 workers of the sample group and the rate of male (54.0) was three times higher than that of female (17.5). 2. In age groups, the highest rate was observed in the group of under 19 years old with 83.5, while the lowest in the group of 40s. 3. It was found that those who had short term of work experience produced a higher rate of injuries, particularly, the group of workers with less than 1 year of experience showed the highest rate of it as 48.1%. 4. In working time, the highest incidence rate occurred 3 and 7 hours after the beginning of their working showing the rate of 6.0 and 6.1 per 1,000 workers, respectively. 5. The highest incidence rate was observed on Monday as 8.4 per 1,000 workers, and it was 18.3% in aspect of the days of a week. 6. In aspect of the months of a year, the highest incidence was observed on July 1,000 workers and the next was on March as 4.8. These figures account for 11.8% of total occurrence in respective month. as 5. 4 per and 10.5% 7. In causes of injuries, the accident caused by power driven machinery showed the highest rate with 37.5%, the second was due to handling without machinery with 17.2%, and the third was due to falling objects with 14.2%, and striking against objects with 10.2%, and so on. 8. By parts of the body affected, the most injuries 84.3% of them occurred on both upper and lower extremities with the rate of 58.8% for the former and 25.5% for the latter. Fingers were most frequently injured with a rate of 40.3%. Comparing the sites of extremities affected, rate of injuries on the right side was 55.0% and 45.0% on the left side. 9. In the nature of injury, laceration and open wound were the highest with 34. 0%, the next was fracture and dislocation with 31. 9%, and sprain was the third with 8.1%. 10. On the duration of treatment, it lasted less than one month in 68.9% of the injured cases, of which 14.5% of the cases were recovered within 2 weeks, and 54.4% of them were treated more than 2 weeks. And the duration of the treatment tended to be prolonged in larger industries. 11. The ratio of insured accidents to uninsured accidents was 1 to 4.7.

  • PDF

Development of Mixed Pesticides Containing Herbicide and Topdressing Fertilizer for Paddy Rice (벼 제초제(除草劑)와 분약비(分蘖肥) 혼합약제(混合藥劑)의 개발(開發))

  • Park, Yang-Ho;Lee, Byung-Moo;Park, Seung-Soon;Lee, In-Yong;Kim, Young-Koo;Park, Young-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.279-287
    • /
    • 1994
  • To develop mixed pesticides of herbicide and topdressing fertilizer for paddy rice, twelve mixtures were formulated with combination of urea coated with different level of acrylic acid wax(AAW) and four herbicides, which were thiobencarb, pretilachlor, mefenacet + bensulfuron-methyl and mefenacet + bensulfuron-methyl + dymron, and effects of the mixtures for weed control, phytotoxicity and rice tillering were investigated in the laboratory and the field experiments. Release rates of active ingredient of herbicides in the distilled water were over 90% during 24 hours same as that of the reference herbicides. The release rates of nitrogen showed different patterns according to coated level of granular urea with acrylic acid wax. Optimum release rate of nitrogen as $NH_4-N$ was obtained by 5.5% AAW coating on urea for thiobencarb or pretilachlor mixture, and by 4.0% AAW coating on urea for mefenacet + bensulfuron-methyl or mefenacet + bensulfuron-methyl + dymron mixture. The pesticide active ingredients of the mixtures were stable, which showed $3.7{\sim}8.0%$ of degradation rate after 90 days of storage under $50^{\circ}C$. Effects on weed control of mixtures were acceptable for both annual and perennial weeds, while ACRI-M9213 mixture showed considerable phytotoxicity at double dose of standard. When treated the mixed pesticides to paddy rice, rice growth status including culm length, ear length, panicle number and polished rice yield exhibited no significant differences compared with the conventional treatment.

  • PDF

Purification of Complement System-Activating Polysaccharide from Hot Water Extract of Young Stems of Cinnamomum cassia Blume (계지(桂枝) 열수추출물로부터 보체계 활성화 다당의 정제)

  • Kweon, Mee-Hyang;An, Hyun-Jung;Shin, Kwang-Soon;Na, Gyeong-Su;Sung, Ha-Chin;Yang, Han-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • A complement system-activating (anti-complementary) polysaccharide was purified from the hot water extract of young stems of Cinnamomum cassia Blume. Crude polysaccharide fraction (CC-1) was prepared from the hot water extract of the young stems followed by methanol-reflux, precipitation with ethanol, dialysis, and lyophilization. The anti-complementary activity of CC-1 was decreased greatly by periodate oxidation, but was not changed by pronase digestion. These suggest that carbohydrate moiety may be related to the activation of complement system. According to its ionic strength CC-1 was fractionated first using cetavlon to give 4 fractions, CC-2, 3, 4 and 5. Among them CC-2 fraction was found to retain the highest activity and yield. CC-2 was separated to an unabsorbed neutral sugar portion (CC-2-I) and seven absorbed acidic sugar fractions $(CC-2-II{\rightarrow}CC-2-VIII)$ on DEAE-Toyopearl 650C (Cl-). CC-2-III showing higher anti-complementary activity and yield than those of other fractions, was further purified on the gel permeation of Sephadex G-100 and Sepharose CL-6B to CC-2-IIIa-3. CC-2-IIIa-3 was determined to have a homogeneity hy GPC (Sepharose CL-6B) and HPLC. Gel chromatography using standard dextrans gave a value of $2.4{\times}10^5$ for the molecular weight. The purified polysaccharide, CC-2-IIIa-3 consisted of arabinose, xylose, glucose, galactose, galacturonic acid and glucuronic acid in a molar ratio of 5.56 : 3.77 : 1.87 : 1.00 : 5.12 : 3.13 and contained no nitrogen.

  • PDF

Evaluation of Adsorbent Sampling Methods for Volatile Organic Compounds in Indoor and Outdoor Air (실내·외 공기 중 휘발성 유기화합물에 대한 흡착 시료채취 방법의 평가)

  • Baek, Sung-Ok;Moon, Young-Hun
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.496-513
    • /
    • 2004
  • This study was carried out to evaluate the performance of sampling and analytical methodology used for the measurement of toxic volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/MSD analysis. Target analytes were 33 compounds including major aromatic compounds such as BTEX, and halogenated compounds. The methodology was investigated with a wide range of different adsorbents which are commercially available and have been frequently adopted for the VOC measurement. A total of 10 adsorbents were tested in this study: 6 carbon-based adsorbents such as Carbotrap, Carbopack B, Carbosieve S-III, Carboxen 1000, Carbotrap C, Activated Charcoal; and 4 polymer-based adsorbents including Tenax, Porapak Q, Chromosorb 102, and Chromosorb 106. The sampling performance was evaluated with respect to the sampling capacity of VOCs with single-adsorbent and multiple-adsorbents methods for standard samples and field samples. As a result, the best adsorbents for single-adsorbent method in the sampling of toxic organic compounds (including benzene, toluene, xylenes etc.) appeared to be Carbotrap, Carbopack B and Tenax TA. On the other hand, Chromosorb 102, Chromosorb 106 and Porapak Q were found to be unsuitable adsorbents for VOC measurement based on thermal desorption method. Multi-adsorbent packings were evaluated with 4 carbon-based adsorbents, which classified by 3 combination sets of double adsorbents and 2 combination sets of triple adsorbents. The results indicated that the most suitable combination for toixc VOC measurements is Carbotrap C with Carbotrap. Multi-sorbents tubes packed with a strong adsorbent such as Carbosieve S-III or Carboxen 1000 were found to be relatively unsuitable for several compounds, not only owing to the effect of migration of adsorbed compounds from weaker adsorbent to stronger adsorbent, but to hydrophobic nature of the adsorbents. Therefore, it should be addressed that selection of a proper adsorbent (or combination of multi sorbents) is extremely important to obtain reliable data for the concentrations of toxic VOCs in indoor and outdoor environments.

The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating (유연 종이 식품 포장재의 개질 아크릴 에멀젼 코팅 특성 및 재활용성 평가)

  • Myungho Lee;In Seok Cho;Dong Cheol Lee;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 2023
  • The worldwide effects of COVID-19 have led to a surge in online shopping and contactless services. The consumption pattern has caused the issues such as the environmental pollution together with the increase of plastic waste. Reducing the reliance on the petroleum based plastic use for the package and replacing it with environmentally friendly material are the simple ways in order to solve those problems. Paper is an eco-friendly product with high recyclability as the food packaging materials but has still poor barrier properties. A barrier coating on surface of the paper can be achieved with the proper packaging materials featuring water, gas and grease barrier. Polyethylene (PE) or polypropylene (PP) coatings which are generally laminated or coated to paper are widely used in food packaging applications to protect products from moisture and provide water or grease resistance. However, recycling of packaging containing PE or PP matrix is limited and costly because those films are difficult to degrade in the environment. This study investigated the recyclability of modified acrylic emulsion coating papers compared to PE and PP polymer matrixes as well as their mechanical and gas barrier properties. The results showed that PE or modified acrylic emulsion coated papers had better mechanical properties compared to the uncoated paper as a control. PE or PP coating papers showed strong oil resistance property, achieving a kit rating of 12. Those papers also had a significantly higher percentage of screen reject during the recycling process than modified acrylic coated paper which had a screen rejection rate of 6.25%. In addition an uncoated paper had similar value of a screen rejection rate. It may suggest that modified acrylic emulsion coating paper can be more easily recycled than PE or PP coating papers. The overall results of the study found that modified acrylic emulsion coating paper would be a viable alternative to suggest a possible solution to an environmental problem as well as enhancing the weak mechanical and poor gas barrier properties of the paper against moisture.

Application of PCM Technology to Concrete II : Effects of SSMA(Sulfonated Styrene-Maleic Anhydride) on the Properties of the 1-Dodecanol Micro-Capsule (PCM 기술의 콘크리트 적용 II : 계면중합법에 의한 1-도데카놀 마이크로 캡슐에 있어서 계면활성제로 사용된 SSMA의 표면활성도가 마이크로 캡슐의 특성에 미치는 영향)

  • Shin, Se-Soon;Jung, Jae-Yun;Lim, Myung-Kwan;Choi, Dong-Uk;Kim, Young-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • Thermal storage technology used for indoor heating and cooling to maintain a constant temperature for a long period of time has an advantage of raising energy use efficiency. This, the phase changing material, which utilizes heat storage properties of the substances, capsulizes substances that melt at a constant temperature. This is applied to construction materials to block or save energy due to heat storage and heat protection during the process in which substances melt or freeze according to the indoor or outdoor temperature. The micro-encapsulation method is used to create thermal storage from phase changing material. This method can be broadly classified in 3 ways: chemical method, physical and chemical method and physical and mechanical method. In the physical and chemical method, a wet process using the micro-encapsulation process utilized. This process emulsifies the core material in a solvent then coats the monomer polymer on the wall of the emulsion to harden it. In this process, a surfactant is utilized to enhance the performance of the emulsion of the core material and the coating of the wall monomer. The performance of the micro-encapsulation, especially the coating thickness of the wall material and the uniformity of the coating, is largely dependent on the characteristics of the surfactant. This research compares the performance of the micro-capsules and heat storage for product according to molecular mass and concentration of the surfactant, SSMA (sulfonated styrene-maleic anhydride), when it comes to micro-encapsulation through interfacial polymerization, in which Dodecan-1 is transformed to melamin resin, a heat storage material using phase changing properties. In addition, the thickness of the micro-encapsulation wall material and residual melamine were reduced by adjusting the concentration of melamin resin microcapsules.