• Title/Summary/Keyword: 고부가가치 생산물

Search Result 3, Processing Time 0.018 seconds

Selection of Wastes and Establishment of Recycling Networks for the Manufacture of Higher Value Added Product by Gasification (고부가가치 화합물 제조를 위한 가스화 대상 폐기물 선정 및 자원화네트워크 구축)

  • Sung, Hojin;Goo, Jaehoi;Lim, Yongtaek;Kim, Narang;Park, Soonam;Kim, Suhyun;Choo, Sootae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.209.1-209.1
    • /
    • 2010
  • 본 연구에서는 울산산업단지 및 인근 지자체에서 발생하는 가연성폐기물 중 화학산업의 원료로 공급하기 위하여 활용가능한 폐기물들을 선정하고, 선정된 폐기물들의 안정적인 수급을 위하여 자원순환네트워크를 구축하는 연구를 수행하였다. 활용가능한 폐기물을 선정하기 위하여 먼저 선정기준을 설정하고, 울산지역에서 발생하는 가연성폐기물의 발생 및 처리현황, 폐기물의 특성 등을 고려하여 활용가능량을 산출하였다. 또한 이들 폐기물을 지속적으로 수급하기 위하여 울산산업단지 기업과 지자체, 합성가스 이용 업체 등으로 구성된 컨소시움을 구축하는 방안을 제안하였다.

  • PDF

Process Control and Dynamic Optimization of Bio-based 2,3-butanediol Distillation Column (바이오 기반 2,3-butanediol 증류 공정의 제어 및 동적 최적화)

  • Giyeol Lee;Nahyeon An;Jongkoo Lim;Insu Han;Hyungtae Cho;Junghwan Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.217-225
    • /
    • 2023
  • 2,3-Butanediol (2,3-BDO), which is used in various fields such as cosmetics and fertilizers, is a high value-added substance and the demand for it is gradually increasing. 2,3-BDO produced from the fermentation of microorganisms not only contains by-products of fermentation, but also varies greatly in feed composition depending on fermentation conditions, so it is difficult to efficiently operate the separation process to reach the target purity of the product. Therefore, in this study, through dynamic optimization of the bio-based 2,3-BDO distillation process, the optimal control route was explored to control the 2,3-BDO concentration of the bottom product to 99 wt% or more, when feed concentration changes. Steady and dynamic state process simulation, proportional integral (PI) controller design, and dynamic optimization were sequentially performed. As a result, the error between the 2,3-BDO concentration and the set point of the bottom product was reduced by 75.2%.

Facile Separation of Zinc Oxalate to Oxalate and its Conversion to Glycolic Acid via Electrochemical Reduction (ZnC2O4의 Oxalate로의 효과적 분리 및 이의 전기화학적 환원을 통한 글리콜산으로의 전환)

  • Sunmi Im;Yiseul Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.46-52
    • /
    • 2023
  • Oxalic acid has been traditionally obtained via the oxidation of carbohydrates using nitric acid and catalysts. However, this process produces a variety of nitrogen oxides during oxidation and requires a separation process due to its various intermediates. These products and additional steps increase the harmfulness and complexity of the process. Recently, the electrochemical reduction of carbon dioxide into oxalic acid has been suggested as an environmentally friendly and efficient technology for the production of oxalic acid. In this electrochemical conversion system, zinc oxalate (ZnC2O4) is obtained by the reaction of Zn2+ ions produced by Zn oxidation and oxalate ions produced by CO2 reduction. ZnC2O4 can then be converted to form oxalic acid, but this requires the use of a strong acid and heat. In this study, a system was proposed that can easily convert ZnC2O4 to oxalic acid without the use of a strong acid while also allowing for easy separation. In addition, this proposed system can also further convert the products into glycolic acid which is a high-value-added chemical. ZnC2O4 was effectively separated into Zn(OH)2 powder and oxalate solution through a chemical treatment and a vacuum filtration process. Then the Zn(OH)2 and oxalate were electrochemically converted to zinc and glycolic acid, respectively.