DOI QR코드

DOI QR Code

Process Control and Dynamic Optimization of Bio-based 2,3-butanediol Distillation Column

바이오 기반 2,3-butanediol 증류 공정의 제어 및 동적 최적화

  • Giyeol Lee (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Nahyeon An (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Jongkoo Lim (R&D Center, GS Caltex Corp.) ;
  • Insu Han (R&D Center, GS Caltex Corp.) ;
  • Hyungtae Cho (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Junghwan Kim (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 이기열 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 안나현 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 임종구 (GS칼텍스 기술연구소) ;
  • 한인수 (GS칼텍스 기술연구소) ;
  • 조형태 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 김정환 (연세대학교 화공생명공학과)
  • Received : 2022.08.18
  • Accepted : 2023.01.13
  • Published : 2023.05.01

Abstract

2,3-Butanediol (2,3-BDO), which is used in various fields such as cosmetics and fertilizers, is a high value-added substance and the demand for it is gradually increasing. 2,3-BDO produced from the fermentation of microorganisms not only contains by-products of fermentation, but also varies greatly in feed composition depending on fermentation conditions, so it is difficult to efficiently operate the separation process to reach the target purity of the product. Therefore, in this study, through dynamic optimization of the bio-based 2,3-BDO distillation process, the optimal control route was explored to control the 2,3-BDO concentration of the bottom product to 99 wt% or more, when feed concentration changes. Steady and dynamic state process simulation, proportional integral (PI) controller design, and dynamic optimization were sequentially performed. As a result, the error between the 2,3-BDO concentration and the set point of the bottom product was reduced by 75.2%.

화장품, 비료 등 다양한 분야에서 사용되는 2,3-butanediol (2,3-BDO) 는 고부가가치 물질로 그 수요가 점차 증가하고 있다. 미생물의 발효로부터 생산된 2,3-BDO는 발효의 부산물을 포함하고 있을 뿐만 아니라 발효 조건에 따라 피드 조성의 변동이 심하여 생산물의 목표 순도에 도달하기 위한 분리 공정의 효율적인 운전이 어렵다. 따라서 본 연구에서는 바이오 기반 2,3-BDO 증류 공정의 동적 최적화를 통해 피드의 농도가 변화할 때 하단 생산물의 2,3-BDO 농도를 99 wt% 이상으로 제어할 수 있는 최적의 제어 경로를 탐색하였다. 정상 및 동적 상태 공정 모사와 Proportional integral (PI) 제어기 설계 후 동적 최적화를 차례로 수행하였다. 그 결과 하단 생산물의 2,3-BDO 농도와 설정점 사이의 오차가 75.2% 감소하였다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 "기업체 에너지공정 최적화 지원 사업(IR-22-0040, IZ-22-0049, UR-22-0031)", "중소·중견기업 4차 산업 기술적용 에너지효율 향상 지원사업(IR-22-0041, IZ-22-0051, UR-22-0030)", "화학산업 연속 제조공정 플랜트 레벨 지능화 플랫폼 기술개발(JH-22-0004)" 및 대한민국 정부 산업통상자원부 및 방위사업청 재원으로 민군협력진흥원에서 수행하는 "민군기술협력사업(UM19313RD3)"의 지원으로 수행한 연구입니다.

References

  1. Lee, Y. G. and Seo, J. H., "Production of 2,3-butanediol from Glucose and Cassava Hydrolysates by Metabolically Engineered Industrial Polyploid Saccharomyces Cerevisiae," Biotechnology for Biofuels, 12(1), 1-12(2019).  https://doi.org/10.1186/s13068-018-1346-y
  2. Ji, X. J., Huang, H. and Ouyang, P. K., "Microbial 2,3-butanediol Production: A State-of-the-art Review," Biotechnology Advances, 29(3), 351-364(2011).  https://doi.org/10.1016/j.biotechadv.2011.01.007
  3. Xiu, Z. L. and Zeng, A. P., "Present State and Perspective of Downstream Processing of Biologically Produced 1,3-propanediol and 2,3-butanediol," Applied Microbiology and Biotechnology, 78(6), 917-926(2008).  https://doi.org/10.1007/s00253-008-1387-4
  4. Haveren, J. Van, Scott, E. L. and Sanders, J., "Bulk Chemicals from Biomass," Biofuels, Bioproducts and Biorefining: Innovation for a Sustainable Economy, 2(1), 41-57(2008).  https://doi.org/10.1002/bbb.43
  5. Maddox, I. S., "Microbial Production of 2, 3-butanediol," Biotechnology Set, 269-291(2001). 
  6. Magee, R. J. and Kosaric, N., "The Microbial Production of 2, 3-butanediol," Advances in Applied Microbiology, in, Elsevier, pp. 89-161. 
  7. Maina, S., Prabhu, A. A., Vivek, N., Vlysidis, A., Koutinas, A., and Kumar, V., "Prospects on Bio-based 2,3-butanediol and Acetoin Production: Recent Progress and Advances," Biotechnology Advances, 54(January 2021), 107783(2022). 
  8. Wong, C. L., Yen, H. W., Lin, C. L. and Chang, J. S., "Effects of pH and Fermentation Strategies on 2,3-butanediol Production with an Isolated Klebsiella sp. Zmd30 Strain," Bioresource Technology, 152, 169-176(2014).  https://doi.org/10.1016/j.biortech.2013.10.101
  9. Wheat, J. A., Leslie, J. D., Tomkins, R. V., Mitton, H. E., Scott, D. S. and Ledingham, G. A., "Production and Properties of 2,3-butanediol: XXVIII. Pilot Plant Recovery of levo-2,3-butanediol from Whole Wheat Mashes Fermented by Aerobacillus Polymyxa," Canadian Journal of Research, 26(11), 469-496(1948). 
  10. Davey, C. J., Havill, A., Leak, D. and Patterson, D. A., "Nanofiltration and Reverse Osmosis Membranes for Purification and Concentration of a 2,3-butanediol Producing Gas Fermentation Broth," Journal of Membrane Science, 518, 150-158(2016).  https://doi.org/10.1016/j.memsci.2016.06.044
  11. Tinoco, D., Pateraki, C., Koutinas, A. A. and Freire, D. M. G., "Bioprocess Development for 2,3-butanediol Production by Paenibacillus Strains," ChemBioEng Reviews, 8(1), 44-62(2021).  https://doi.org/10.1002/cben.202000022
  12. Hong, J., Van Duc Long, N., Harvianto, G. R., Haider, J. and Lee, M., "Design and Optimization of Multi-effect-evaporation-assisted Distillation Configuration for Recovery of 2,3-butanediol from Fermentation Broth," Chemical Engineering and Processing - Process Intensification, 136(January), 107-115(2019).  https://doi.org/10.1016/j.cep.2019.01.002
  13. Harvianto, G. R., Haider, J., Hong, J., Van Duc Long, N., Shim, J. J., Cho, M. H., Kim, W. K. and Lee, M., "Purification of 2,3-butanediol from Fermentation Broth: Process Development and Techno-economic Analysis," Biotechnology for Biofuels, 11(1), 1-16(2018).  https://doi.org/10.1186/s13068-017-1003-x
  14. Sanchez-Ramirez, E., Quiroz-Ramirez, J. J., Hernandez, S., Segovia Hernandez, J. G., Contreras-Zarazua, G. and Ramirez-Marquez, C., "Synthesis, Design and Optimization of Alternatives to Purify 2,3-Butanediol Considering Economic, Environmental and Safety Issues," Sustainable Production and Consumption, 17, 282-295(2019).  https://doi.org/10.1016/j.spc.2018.11.011
  15. Anderson, T. F. and Prausnitz, J. M., "Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. 1. Vapor-liquid Equilibria," Industrial & Engineering Chemistry Process Design and Development, 17(4), 552-561(1978).  https://doi.org/10.1021/i260068a028
  16. Lv, F., Song, J., Giltrap, D., Feng, Y., Yang, X. and Zhang, S., "Crop Yield and N2O Emission Affected by Long-term Organic Manure Substitution Fertilizer Under Winter Wheat-summer Maize Cropping System," Science Total Environment, 732, 139321(2020). 
  17. Ellis, G., Control System Design Guide: Using Your Computer to Understand and Diagnose Feedback Controllers. Butterworth-Heinemann(2012). 
  18. Lawrence, P. S., Grunewald, M. and Agar, D. W., "Spatial Distribution of Functionalities in An Adsorptive Reactor at the Particle Level," Catalysis Today, 105(3-4), 582-588(2005). https://doi.org/10.1016/j.cattod.2005.06.010