• Title/Summary/Keyword: 고등학교 과학 교과

Search Result 394, Processing Time 0.02 seconds

Conceptualization of an SSI-PCK Framework for Teaching Socioscientific Issues (과학기술 관련 사회쟁점 교육을 위한 교과교육학적 지식(SSI-PCK) 요소에 대한 탐색)

  • Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.539-550
    • /
    • 2016
  • The purpose of the study is to conceptualize SSI-PCK by identifying major components and sub-components to promote science teachers' confidence and knowledge on teaching SSIs. To achieve this, I conducted extensive literature reviews on teachers' perceptions on SSI, case studies of teachers addressing SSIs, SSI instructional strategies, etc. as well as PCK. Results indicate that SSI-PCK include six major components: 1) Orientation for Teaching SSI (OTS), 2) Knowledge of Instructional Strategies for Teaching SSI (KIS), 3) Knowledge of Curriculum (KC), 4) Knowledge of Students' SSI Learning (KSL), 5) Knowledge of Assessment in SSI Learning (KAS), and 6) Knowledge of Learning Contexts (KLC). OTS refers to teachers' instructional goals and intentions for teaching SSIs. Teachers often present a) activity-driven, b) knowledge and higher order thinking skills, c) application of science in everyday life, d) nature of science and technology, e) citizenship and f) activism orientations for teaching SSIs. KIS indicates teachers' instructional knowledge required for effectively designing and implementing SSI lessons. It includes a) SSI lesson design, b) utilizing progressive instructional strategies, and c) constructing collaborative classroom cultures. KC refers to teachers' knowledge on a) connection to science curriculum (horizontal/vertical) and b) connection to other subject matters. KSL refers to teachers' knowledge on a) learner experiences in SSI learning, b) difficulties in SSI learning, and c) SSI reasoning patterns. KAS indicates teachers' knowledge on a) dimensions of SSI learning to assess, and b) methods of assessing SSI learning. Finally, KLC refers to teachers' knowledge on the cultures of a) classrooms, b) schools, and c) community and society where they are located when teaching SSIs.

Comparative Studies on Credit Systems of Secondary Vocational Education in Australia and Finland (호주와 핀란드의 중등단계 직업교육 학점제 비교 연구)

  • Choi, Su-Jung;Jeon, Yeong-Uk;Ryu, Ji-Eun;Lee, Eun-Pyo;Ko, Gwi-Young;Suh, Ye-Lin
    • Korean Journal of Comparative Education
    • /
    • v.27 no.6
    • /
    • pp.191-210
    • /
    • 2017
  • The purpose of this study is to examine the current state of credit system in secondary and vocational education in Australia and Finland. For this purpose, this study compares the secondary vocational education system in Australia and Finland and compares how the curriculum is organized, operated and evaluated at secondary level. Australia and Finland have different characteristics in secondary vocational education system, while Australia operates vocational education programs mainly in comprehensive high schools under a decentralized system, while Finland is a centralized system and is divided into general education institutions and separate vocational education institutions. However, in terms of the organization and operation of the curriculum, both countries are based on the credit system, adopting the unemployed school system, and guaranteeing the choice of students. The results of this study are meaningful in that the policy direction to introduce and operate the credit system at the high school level recently has made meaningful implications through the present situation of overseas countries.

The Effect of an Educational Program Based on the 5E Circular Learning Model for Changing Chemistry Teachers' Metamodeling Recognition (화학교사들의 메타모델링 인식 변화를 위한 5E 순환학습 모형 기반 교육프로그램의 효과)

  • Miyeon Seo;Juhye Park;Kihyang Kim;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.5
    • /
    • pp.259-273
    • /
    • 2024
  • This study aimed to investigate changes in metamodeling recognition among chemistry teachers through a teacher educational program related to redox models and water electrolysis experiments. To this end, a science model education program was developed for 9 chemistry teachers and conducted over 10 lessons for a total of 40 hours. In addition, a pre- and post-survey was administered to determine teachers' metamodeling recognition in non-contextual and contextual situations. As a result of the study, through the science model education program, teachers showed educational effects in both non-contextual and contextual situations. In the case of non-contextual situations, the stages of scientific metamodeling knowledge development of chemistry teachers came out differently depending on the type of question. For example, the nature or purpose of the model, the modeling process, or the evaluation and improvement of the model improved from low to high, but there was no significant change because the perception of model change and diversity was already high in advance. In the case of contextual situations, the stage of scientific metamodeling knowledge development improved from objectivity to subjectivity in both the redox model theory class and the water electrolysis model experiment class. Therefore, through the 5E circular learning model-based education program, chemistry teachers' perception of metamodeling was clearly improved. However, the modeling activities of teachers in the water electrolysis model experiment class were different from the change in metamodeling perception. The types that teachers selected as additional experiments for modeling were analyzed in two ways. The first type is when they are interested in finding an ideal condition in which the ratio of hydrogen and oxygen gas is close to 2:1 through additional experiments. The second type is when additional experiments are designed with interest in why the experimental results are coming out like that. It was analyzed that the second type was the experiment necessary for modeling. In addition, modeling activities were analyzed into two types. The first was a type in which water molecules were directly decomposed in two electrodes to generate hydrogen and oxygen gas. This type was the case of regression to the textbook model regardless of the experimental results, and 6 chemistry teachers out of 8 were analyzed as this type. The second type was the type in which water reacted at the (+) electrode to generate other substances, and hydrogen ions reacted at the (-) electrode to generate hydrogen gas. Teachers who performed these modeling activities corresponded to the second type in additional experiments, and 2 chemistry teachers out of 8 corresponded to this. Therefore, it is necessary to provide an experience of activities corresponding to the second type of experiment and modeling through an educational program that provides an experience of directly modeling through experiments in order to develop modeling capabilities, unlike the development of metamodeling knowledge.

The Influence of the repeated learning of moving picture materials applying 'the development of mathematical power' program on The Self-Directed Learning (수학적 힘의 신장 프로그램을 적용한 교실 수업 동영상 자료 반복 학습이 자기 주도적 학습에 미치는 영향 - 수학 I 을 중심으로 -)

  • Byun Kyung-Hae
    • Communications of Mathematical Education
    • /
    • v.20 no.2 s.26
    • /
    • pp.295-326
    • /
    • 2006
  • Despite the importance of mathematics education, many students in high school have lost their interests and felt difficulties and they don't have 'mathematical' experience with meanings attached because of the entrance examination. This paper attempted to resolve these problems and find the teaching-method with which students can study by themselves with more confidence. Nowadays students' use of Internet is very popular. After develop 'the development of mathematical power' program based on mathematics history, history, science, the application of problems in real world, and self-evaluation, I made students repeat them after making teaching lessons in classroom as moving pictures. Through this processes, I attempted to develop the Self-Directed Learning' ability by making public education substantial. First of all I analyzed the actual conditions on 'Self-Directed Learning' ability in mathematics subject, the conditions of seeing and hearing in Internet learning program, and students' and their parents' interests in Internet education. By analyzing the records, I observed the significance of the introducing mathematics history in mathematics subject in early stager, cooperative-learning, leveled-learning, self-directed learning, and Internet learning. Actually in aspect of applying 'the development of mathematical power' program, at first I made up the educational conditions to fix the program, collected the teaching materials, established the system of teaching-learning model, developed materials for the learning applying Internet mail and instruments of classroom, and carried out instruction to establish and practice mathematics learning plan. Then I applied the teaching-learning model of leveled cooperation and presentation loaming and at the same time constructed and used the leveled learning materials of complementary, average, and advanced process and instructed to watch teaching moving pictures through Internet mail and in the classroom. After that I observed how effective this program was through the interest arid attitude toward mathematics subject, learning accomplishment, and the change of self-directed learning. Finally, I wrote the conclusion and suggestion on the preparation of conditions fur the students' voluntary participation in mathematics learning and the project and application on 'the development of mathematical power' program and repeated learning with the materials of moving pictures in classroom.

  • PDF