• Title/Summary/Keyword: 고관전압

Search Result 21, Processing Time 0.032 seconds

Image quality assessment with dose reduction using high kVp and additional filtration for abdominal digital radiography (디지털 복부방사선검사에서 고관전압과 부가여과판을 사용한 선량감소와 영상평가)

  • Jang, ji-sung;Lee, ho-beom;Choi, kwan-woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.59-60
    • /
    • 2018
  • 디지털 복부 방사선검사에서 고관전압과 부가필터를 이용한 선량감소가 최근 큰 관심을 받고 있다. 본 연구에서는 복부 방사선 검사에서, 기존 방법(80 kVp without filter)과는 다른 고관전압(92 kVp)과 부가필터(0.1 mm Cu-filter)를 사용하여 적절한 진단학적 영상품질을 유지하면서 상당한 환자 선량을 감소 시켰다. 따라서, 본 연구에 방법을 적절하게 이용하면 진단학적 영상품질을 유지하며 환자선량도 감소하는데 유용하리라 사료된다.

  • PDF

Inspection of electronic components using dual X-ray energy (이중 엑스선 에너지를 이용한 전자부품 검사)

  • Chon, Kwon Su;Seo, Seung Jun;Lim, Jae Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.301-306
    • /
    • 2015
  • X-ray can be applied to obtain a projection image of an object. It is not easy to obtain an high quality image for the object composed of low and high density materials. For the object with large difference in density, it is possible to realize high contrast image using images of low and high tube voltages and image processing. The plastic and metalic parts of the electronic components can be imaged by the dual energy technique which use low and high tube voltages and by processing pixel-by-pixel using visual C++. The contrast-enhanced image can be used to detect and observe defects within the electronic components.

Image Quality Evaluation of CsI:Tl and Gd2O2S Detectors in the Indirect-Conversion DR System (간접변환방식 DR장비에서 CsI:Tl과 Gd2O2S의 검출기 화질 평가)

  • Kong, Changgi;Choi, Namgil;Jung, Myoyoung;Song, Jongnam;Kim, Wook;Han, Jaebok
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • The purpose of this study was to investigate the features of CsI:Tl and $Gd_2O_2S$ detectors with an indirect conversion method using phantom in the DR (digital radiography) system by obtaining images of thick chest phantom, medium thickness thigh phantom, and thin hand phantom and by analyzing the SNR and CNR. As a result of measuring the SNR and CNR according to the thickness change of the subject, the SNR and CNR were higher in CsI:Tl detector than in $Gd_2O_2S$ detector when the medium thickness thigh phantom and thin hand phantom were scanned. However, when the thick chest phantom was used, for the SNR at 80~125 kVp and the CNR at 80~110 kVp in the $Gd_2O_2S$ detector, the values were higher than those of CsI:Tl detector. The SNR and CNR both increased as the tube voltage increased. The SNR and CNR of CsI:Tl detector in the medium thickness thigh phantom increased at 40~50 kVp and decreased as the tube voltage increased. The SNR and CNR of $Gd_2O_2S$ detector increased at 40~60 kVp and decreased as the tube voltage increased. The SNR and CNR of CsI:Tl detctor in the thin hand phantom decreased at the low tube voltage and increased as the tube voltage increased, but they decreased again at 100~110 kVp, while the SNR and CNR of $Gd_2O_2S$ detector were found to decrease as the tube voltage increased. The MTF of CsI:Tl detector was 6.02~90.90% higher than that of $Gd_2O_2S$ detector at 0.5~3 lp/mm. The DQE of CsI:Tl detector was 66.67~233.33% higher than that of $Gd_2O_2S$ detector. In conclusion, although the values of CsI:Tl detector were higher than those of $Gd_2O_2S$ detector in the comparison of MTF and DQE, the cheaper $Gd_2O_2S$ detector had higher SNR and CNR than the expensive CsI:Tl detector at a certain tube voltage range in the thick check phantom. At chest X-ray, if the $Gd_2O_2S$ detector is used rather than the CsI:Tl detector, chest images with excellent quality can be obtained, which will be useful for examination. Moreover, price/performance should be considered when determining the detector type from the viewpoint of the user.

Effect of High Tube Voltage and Scatter Ray Post-processing Software on Image Quality and Radiation Dose During Chest Anteroposterior Radiography (흉부 전·후방향 검사 시 고관전압 및 산란선 후처리 소프트웨어 적용이 화질과 선량에 미치는 영향)

  • Kim, Jong-Seok;Joo, Young-Cheol;Lee, Seung-Keun
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.295-300
    • /
    • 2021
  • This study aims to present new chest AP examination exposure conditions through a study on the effect on image quality and patient dose by applying high tube voltage and scatter ray post-processing software during chest AP examination in digital radiography equipment. This study was used a human body phantom and in the chest AP position, the dosimeter was placed horizontally at the thoracic spine 6. The experiment was conducted by dividing into a low tube voltage (70 kVp, 400 mA, 3.2 mAs) group and a high tube voltage (100 kVp, 400 mA, 1.2 mAs) group. The collimation size (14″× 17″) and the source to image receptor distance(110 cm) were same applied to both groups. Radiation dose was presented to dose area product and entrance surface dose. Image quality was compared and analyzed by comparing the difference between the signal-to-noise ratio and the contrast-to-noise ratio of the image according to the application of the scatter ray post-processing software under each condition. The average value of the entrance surface dose in the low and high tube voltage conditions was 93.04±0.45 µGy and 94.25±1.51 µGy, which was slightly higher in the high tube voltage condition, but the dose area product was 0.97±0.04 µGy and 0.93±0.01 µGy. There was a statistically significant difference in the group mean value(p<0.01). In terms of image quality, the values of the signal-to-noise ratio and the contrast noise ratio were higher in the high tube voltage than in the low tube voltage, and decreased when the scattering line post-processing function was used, but the contrast resolution was improved. If there is a scatter ray post-processing function during chest AP examination, it is helpful to actively utilize it to improve the image quality. However, when this function is not available, I thought that applying a higher tube voltage state than a low tube voltage state will help to realize images with a large amount of information without changing the dose.

A Study on High Kilovoltage Technique in taking Chest Radiogram. (흉부(胸部) 고관전압(高管電壓) 촬영조건(撮影條件)에 관(關)한 검토(檢討))

  • Kang, Hong-Seok;Kim, Chang-Kyun;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.2 no.1
    • /
    • pp.37-43
    • /
    • 1979
  • High kilovoltage technique as compared with low kilovoltage in taking chest radiogram has much advantages. Authors performed an experiment by using acryl phantom to make the technical chart at 120KV and obtained the results as follows; 1. Increase and decrease of tube voltage in thickness change was 3.2KV per cm at variable technic chart. 2. At fixed kilovoltage technic chart, increase and decrease was $0.12{\sim}0.2$ mAs per cm in chest thickness. 3. Increase and decrease of distance was 1.3inches per cm in thicknese change

  • PDF

An Assessment of the Radiation Dose from Radiography with the Change in Air Gap (공극(기극(氣隙)) 변화에 따른 방사선촬영 선량평가)

  • Ahn, Byeong Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.381-385
    • /
    • 2016
  • This study aims to propose a method for reducing radiation dose in high-voltage radiography using air gap technique while maintaining the same image quality as when using grids. For an experiment, air gaps were set at 10 cm, 15 cm, 20 cm, 25 cm, and 30 cm with a focus-receptor distance of 180 cm; with each air gap distance, tube current was set at 15 mAs, and tube voltage was set at 80 kVp, 85 kVp, 90 kVp, 95 kVp and 100 kVp. Then, radiographs were taken. In a situation of employing a conventional method of using grids, radiographs were taken at 15 mAs and 107 kVp with a focus-receptor distance of 180 cm. According to the results of the experiment, the surface radiation dose from radiography using grids was 0.130 R; the surface radiation dose at a 20cm air gap was 0.124 R; PSNR between these two images was 10.65 [dB]. In conclusion, the air gap distance, which could maintain the image quality similar to that of a case where scattered radiation was removed and grids were used with a small surface radiation dose, was 20 cm. The result of this study is thought to be used as an indicator to remove surface radiation dose in radiography using air gap.