• Title/Summary/Keyword: 고강도

Search Result 3,817, Processing Time 0.03 seconds

P-M Interaction Curve for Square CFTs with High-Strength Concrete (고강도 콘크리트를 사용한 각형 CFT 기둥의 축력-모멘트 상관곡선)

  • Choi, Young Hwan;Kim, Kang Su;Choi, Sung Mo;Lee, Sangsup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.575-585
    • /
    • 2007
  • In this study, a new design equation was presented for square CFTs with high-strength concrete subjected to axial compression and bending. In a previous study, a design equation for square CFTs with normal strength concrete was proposed. A parametric study by fiber analysis was performed taking the width-to-thickness ratio (b/t) and the relative concrete strength to the yield strength of the steel tube (fck/Fy) as the main parameters of this study to determine the maximum moment and the axial load at the maximum moment. A new constitutive model for concrete was adopted for fiber analysis in order to take into account the effect of high-strength concrete. The results of the parametric study were embedded into the method which was presented in the previous study to formulate a new design equation that can be easily used for estimating the strength of square CFTs with high-strength concrete.

The Variations on The Fire Resistance of High Strength Concrete Column Incorporating Organic Fiber with Assessment Methods (유기 섬유 혼입 고강도 콘크리트 부재의 평가 방법에 따른 내화성능 변화에 관한 연구)

  • Lee, Seung-Hoon;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.945-948
    • /
    • 2008
  • Fire resistance is a measure of the ability of building element to resist a fire. For concrete columns, the fire resistance depends on many factors, including strength, density, and moisture content of concrete, fire intensity, column size and shape, reinforcement detail, loading condition, and aggregate type etc. However, it is well-known that the high strength concrete (HSC) is more susceptible to spalling than normal strength concrete (NSC) and the behaviour of HSC column exposed to fire is significantly affected by the spalling. Recently, as one of the measures to reduce the spalling of HSC, incorporating polypropylene(PP) fiber has been investigated and successfully used in construction fields. However, the establishment of assessment method on the fire resistance of HSC column is very important as well as the improvement of fire performance of HSC. In this study, the variations on the fire resistance of HSC column with assessment methods was studied for the columns controlled the concrete spalling by PP fiber.

  • PDF

Prediction of Equivalent Stress Block Parameters for High Strength Concrete (고강도 콘크리트의 등가응력 매개변수 추정에 관한 연구)

  • Lee, Do Hyung;Jeon, Jeongmoon;Jeong, Minchul;Kong, Jungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.227-234
    • /
    • 2011
  • Recently, a high strength concrete of more than 40 MPa has been increasingly used in practice. However, use of the high strength concrete may influence on design parameters, particularly stress distribution. This is very true since the current everyday practice employs equivalent rectangular stress distribution that is derived from normal strength concrete. Subsequently, the stress distribution seems to be reevaluated and then a new distribution with new parameters needs to be suggested for the high strength concrete. For this purpose, linear and multiple regression analyses have been carried out in term of using experimental data for the high strength concrete of 40 to 80 MPa available in literatures. Accordingly, new parameters associated with the stress distribution have been proposed and employed for the design of flexural and compressive members. Comparative design examples indicate that designs with new parameters reduce section dimensions compared to those with the current code parameters for concrete strengths of 40 to 70 MPa. In particular, for compressive members, design with new parameters exhibit conservative compressive force compared to those with the current code parameters.

Punching Shear Behavior of High-strength Lightweight Concrete Slab Under Concentrated Load (집중하중을 받는 고강도 경량콘크리트 바닥판의 펀칭전단 거동)

  • Cho, Sun-Kyu;Kwark, Jong-Won;Lee, Jong-Min;Moon, Dae-Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.219-228
    • /
    • 2006
  • Because of the advantage of light weight, lightweight concrete is frequently applied to long-span bridges and high-rise buildings. In the country, there is not enough experience for the long-span bridges using lightweight concrete. This paper presents results of an experimental study on the punching shear strength of high-strength lightweight concrete slabs. Four test slabs are fabricated using high-strength lightweight concrete and normalweight concrete and at the center of the test slabs, simulated wheel load is applied until failure. The compressive strengths of lightweight concrete and normalweight concrete are 47MPa and 32MPa, respectively. The test results show the failure mode of all specimens are punching shear and the behaviors of high-strength lightweight concrete slabs are very similar to that of normalweight concrete slabs. Based on the test results, it is discussed the safety and serviceability of high-strength lightweight concrete bridge decks.

The Investigation of Blocks on High Strength Concrete (고강도 콘크리트 부재의 응력블록에 관한 검토)

  • 신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 1990
  • The object of this study was to investigate the flexural stress blocks of High Strength Concrete Members under monotonic loading. Such a stress block should be clearly idealized before High Strength Concrete can be used with confidence in Structural Members. The principal test variables were the Compressive Strength of Concrete, the percentage of longitudinal reinforcement and the spacing of confinement reinforcement. The rectangular stress block of the present ACI Building Code was found to give acceptably conservative flexural strength predictions over the entire range of concrete strength from 280kg/crd (4Ksi)to 1050kg/crd( 15Ksi)

Shear Mechanism of Reinforced High Strength Concrete Beams Without Shear Confinement (전단보강이 없는 고강도 철근 콘크리트 보의 전단역학적 거동에 관한연구)

  • 신성우;이광수;권영호;오정근
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.1
    • /
    • pp.67-74
    • /
    • 1989
  • 건축물의 고충화, 대형화 및 특수화에 따른 콘크리트의 고강도화는 필수적이다. 그러나 고강도화는 높은 취성파괴 양성을 보여주며, 이들이 전단파괴의 병합될 때 구조체의 안전성에 큰 문제를 던져주고 있다. 본 연구는 고강도 콘크리트(f'c=800㎏/㎠)보가 전단보강이 되어있지 않은 경우 전단강도 및 파괴 양성을 조사하기 위하여 주요변수로서 전단스팬비(a/d)=3.0, 4.0, 6.0그리고 주근비 (ρt)=0.5ρb, 1.0ρb로 하였다. 실험결과, 현재의 건설부 극한강도 구조 규준식이나 ACI규준식은 주근량과 a/d의 효과를 과소평가하고, 콘크리트의 강도 증가에 따른 잇점은 과대평가하고 있는 것으로 판명되었다.

Development of Fire-resistant Concrete using Fibre Cocktail (섬유혼입공법을 적용한 고내화 콘크리트의 개발)

  • Youm, Kwang-Soo;Jeon, Hyun-Kyu;Won, Cheol;Kim, Heung-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.949-952
    • /
    • 2008
  • 화재안전 신뢰성이 확보된 고강도 콘크리트 구조물의 시장 공급을 위하여 GS건설에서는 2005년 부터 고강도 콘크리트 구조물의 강도 영역별 폭렬 저감 및 거동 안전성 평가와 수치해석 방법을 통한 경제적인 설계방법를 최종 연구목표로 하여 현재까지 콘크리트 재료의 열적 특성 확보와 구조부재 화재 특성 연구를 수행해 왔다. 강도발현, 시공성, 내화성능과 경제성에 대한 분석을 해외연구 기관에 의뢰하여 섬유혼입공법을 선정한 후 이에 대한 재료의 물리적 특성과 역학적 특성 실험결과를 바탕으로 고강도 콘크리트 구조부재의 내화성능을 예측 분석할 수 있도록 비열 모델, 열전도율모델, 압축강도 모델, 탄성계수 모델을 구축하였다. 또한 기둥과 보에 대한 내화실험을 실시하여 내화성능을 평가하였으며, 이에 대한 열적 해석을 병행하여 진행하였다.

  • PDF

Relation Between Explosive Spalling and Pore Stucture of High-Strength Concrete (고강도콘크리트의 폭렬성상과 공극구조와의 관계)

  • Kim, Dong-Joon;Lee, Jae-Young;Harada, Kazunori;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.89-93
    • /
    • 2011
  • 본 연구는 고강도콘크리트의 폭렬성상과 공극구조와의 관계를 실험적으로 규명하는 것을 목적으로 하였다. 실험변수는 양생방법, 압축강도, 공극구조로 설정하였으며, ISO834 화재온도이력곡선을 15분 적용하여 콘크리트의 초기 폭렬특성을 실험적으로 검토하였다. 그 결과 50 MPa급 이상의 고강도 콘크리트 시험체의 경우, 가열 이후에도 $0.05{\mu}m$ 이하의 공극이 많이 존재하고 있는 것을 알 수 있었으며, 가열을 받은 고강도 콘크리트는 고강도화될수록 공극이 세공화 되어 탈수 현상이 지연되는 것을 도출 할 수 있었다.

  • PDF

A Study on Physical Properties of Concrete using Admixtures for High Strength Concrete (고강도콘크리트용 혼화재를 사용한 콘크리트의 물성에 관한 연구)

  • 이승한
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.155-164
    • /
    • 1995
  • This study was performed to get high strength of the precase concrete adopting a steam curing by using a gypsum-admixture for the high strength concrete. The superplasticizer was used to compensate low slump of base concrete keeping its slump up about $6{\pm}1cm$. To examine the property for strength revelation of concrete using admixtures for a high strength concrete, steam and standard curing were compared each other. Test results were shown that admixtures for high strength concrete were more effective in steam curing than standard curing. On the condition that the unit cement content is about $530{\sim}600kg/m^3$, the compressive strength of concrete replacing by 10% of the admixture was obtained over $65Okgf/cm^2$, which was increased as 1.3 times as that for the nonreplacement. When the admixture was replaced to 15-30%, the compressive strengh was obtained over $700kgf/cm^2$ which was increased as 1.4 - 1.5 times. Therefore, the admixture for high strength concrete, being effective in steam curing, was more efficient to get a high strength concrete using only steam curing instead of an autoclave curing for the secondary products of cement.

Field Application of High Strength Concrete by Cement Types Using Maturity (적산온도를 이용한 시멘트 종류별 고강도 콘크리트의 현장 적용성)

  • Kim, Dong Baek
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.472-478
    • /
    • 2020
  • Purpose: The purpose of the study is to help economic and safe construction by accurately predicting the initial strength of high-strength concrete (70MPa) for each type of cement, securing reliability of concrete quality, and drawing accurately the timing of form deformed, tensioning time of PS concrete, and openning of traffic after road repair with maturity. Method: Calculate the maturity by measuring the hydration heat with cement type for each age, and measure the strength of concrete with age to predict the strength corresponding to the any maturity. Result: In estimating the time required for traffic opening in road repair, ASTM C1074 was theoretically estimated at 16.4 hours for high-strength concrete, but in this study, maturity was calculated at 307, 14.4 hours for OPC and maturity at 2700, 34 hours for LHPC and maturity 200, 8 hours for ESPC. Conclusion: The timing of form deformed of structures using high-strength concrete and the opening of traffic of road repair may be much faster than in the case of concrete using OPC below the design basis strength 40MPa applied by ACI Committee 347.