• Title/Summary/Keyword: 고강도

Search Result 3,817, Processing Time 0.029 seconds

Flexural Behavior of RC Beams Using High-Strength Reinforcement for Ductility Assessment (고강도 철근을 활용한 휨 부재의 연성거동에 관한 연구)

  • Kwon, Soon-Beom;Yoon, Young-Soo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.119-126
    • /
    • 2002
  • This paper presents the appropriateness for using high strength reinforcement according to the use of high strength concrete. Nine flexural tests were conducted on full-scale beam specimens according to the concrete strength, reinforcement strength and reinforcement ratio as main variable. The structural behavior was analyzed due to the flexural strength, stress-strain curve, deflections at yielding and fracture point, crack appearance and ductility factor. The member with high-strength reinforcements showed large deflection at yielding point and this was analyzed as a main cause to decrease the ductility factor. Structural behavior after yielding point, however, showed similarity to behavior of members with normal strength reinforcements of same stiffness. It was found that in the case of using reinforcements of $5500kgf/cm^2$ strength, the combination with concrete of $800kgf/cm^2$ strength demonstrated the great appropriateness which can increase the flexural capacity without any reduction of maximum reinforcement ratio.

An Experimental Study of Mechanical Properties of High-strength Concrete (고강도 콘크리트의 역학적 특성에 대한 실험 연구)

  • Yang, In-Hwan;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.206-215
    • /
    • 2017
  • An experimental program was carried out to investigate the mechanical properties of high-strength concrete. High-strength concrete with compressive strengths of 80 to 120 MPa was tested. Test results are presented regarding effect of water-binder ratio on compressive strength and compressive strength gain. In addition, the effect of curing methods on compressive strength, elastic modulus, splitting tensile strength, and modulus of rupture is investigated. Test results of elastic modulus, splitting tensile strength, and modulus of rupture are compared with predictions from the current design recommendations. Predictions of elastic modulus by using KCI recommendation has good agreement with test results. However, predictions of modulus of rupture by using KCI recommendation underestimate the test results. ACI 363R recommendations predict well test results of splitting tensile strength and modulus of rupture. ACI 363R recommendations for predicting splitting tensile strength and modulus of rupture can be used for high-strength concrete with compressive strengths up to 120 MPa.

Weldabilities of 7000 Aluminium Alloys (I) (7000계열을 중심으로 한 알루미늄 합금의 용접 특성 (I))

  • 박성탁;정재필;서창제
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.38-43
    • /
    • 1994
  • 고강도 알루미늄합금은 중량이 가벼우면서 인장강도와 항복강도가 높고 가공성, 성형성이 좋아 항공기, 자동차, 선박 등 수송용 재료로 각광을 받고 있으며, 이 중 Al-Zn-Mg계(7000계) 알루미늄 합금은 용접 구조물용 경량소재로 활용범위가 높다. Al-Zn-Mg계 알루미늄 합금은 고온에서 용체화 처리후 저온으로 급냉시킨 재료를 자연시효 또는 인공시효처리를 하여 이 때 석출되는 시효 석출물에 의해 강도를 증가시킨 석출 경화형 합금이다. 그런데, 7000계열 알루미늄합금은 적절한 열처리 작업을 통해 최적의 기계적 성질이 얻어지도록 합금설계가 되어있기 때문에 구조물 제작시 용접에 의한 ARC 열을 받게 되면 열이력(thermal cycle)에 의해 모재의 미세조직이 변화하고 용접 결함이 발생하며 강도의 약화와 함께 내식성 등이 저하한다. 따라서 고강도 알루미늄합금의 용접성을 향상시키기 위해서는 용접부의 미세조직거동과 용접부에 발생하는 용접결함의 현상을 조사하여 용접용 고강도 합금에 필수적으로 요구되는 용접성에 대한 검토가 충분히 이루어져야 한다. 따라서 본 고에서는 알루미늄합금, 특히 7000계열 알루미늄합금에 주목하여, 용접방법, 각종 결함과 대책, 용접부의 시효경화와 응력부식균열 및 기계적 성질 등을 지금까지 보고된 각종 자료를 기초로 하여 3회에 걸쳐 기술하고자 한다.

  • PDF

Tension Stiffening Effect and Crack Behavior of Tension Members Using High Strength Concrete (고강도 콘크리트 인장부재의 인장강화효과와 균열거동)

  • Kim, Jee-Sang;Park, Chan Hyuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • The verification of serviceability of concrete structures requires more informations on the composite behaviors between concrete and reinforcement. Among them, the investigation of crack widths and spacings is based on the tension stiffening effects. In this paper, the tension stiffening effects of high strength concrete members with compressive strength of 80 and 100MPa are investigated experimentally. It was found that the current design code which is based on the tests of normal strength concrete may not describe the tension stiffening effects in high strength concrete correctly. The coefficient that can appropriately reflect the tension stiffening effects in the high strength concrete was proposed. Also, the crack spacing was investigated through the cracking behaviors and the crack width according to the difference of the strains in steel and concrete was estimated. The results of this paper may be used to examine the tension stiffening effects of high strength concrete members.

An experimental study on mechanical behavior of shield segment with high-strength concrete and high-tension rebar (고강도 콘크리트와 고장력 철근을 적용한 쉴드 세그먼트의 역학적 거동에 대한 실험적 연구)

  • Lee, Gyu-Phil;Park, Young-Taek;Choi, Soon-Wook;Bae, Gyu-Jin;Chang, Soo-Ho;Kang, Tae-Sung;Lee, Jin-Seop
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.215-230
    • /
    • 2012
  • An experimental research on the possibility of using high-strength concrete with the design strength of 60 MPa and high-tension rebar with the yielding strength of 600 MPa instead of conventional reinforced concrete segment to reduce its production cost was performed. Full-scale bending tests on both conventional and high-strength reinforced concrete segments were carried out to compare their mechanical and structural behaviors of the segments under flexural action. From the experiments, it was shown that the failure load of high-strength reinforced concrete segment was approximately 30% higher than that of the conventional segment even though reinforcements in high-strength segment were reduced by 26%. The test result showed that the bearing capacity of high-strength segment highly increased by high-strength concrete and high-tension rebar. It also verified the high possibility of high-strength reinforced concrete segment as a technical alternative to reduce the production cost of segments in a shield tunnel.

Mechanical Properties of High Strength Concrete with High Volume Mineral Admixture (다량의 혼화재를 사용한 고강도 콘크리트의 역학적 특성)

  • Baek, Chul-Woo;Park, Cho-Bum;Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.180-187
    • /
    • 2014
  • The purpose of this study is to evaluate on the mechanical properties of High Volume Mineral Admixture(HVMA) high strength concrete to reduce the amount use of Ordinary Potland Cement, to discover the optimized HVMA binder and to test HVMA concrete based on the change of W/B and curing temperature. The results were shown as follows: The HVMA binder using the mixture of combined heat power plant fly ash and anhydrous gypsum known as inorganic activators with the mixture of blast furnace slag and fly ash was optimized. The mixture of HVMA high strength concrete at 26% of W/B ratio had a good result on flow characteristic and mechanical properties. High strength HVMA concrete over 50MPa is possibly manufactured over curing temperature $20^{\circ}C$.

Bond Properties of CFRP Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers (보강섬유의 표면처리에 따른 섬유보강 고강도콘크리트와 CFRP 보강근의 부착특성)

  • Park, Chan-Gi;Won, Jong-Pil;Cha, Sang-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • The effects of surface treatment method of reinforcing fiber on the bonding strength between carbon fiber reinforced polymer rebar (CFRP rebar) and high strength concrete have been evaluated in this study. The structural PVA fiber is coated with a proprietary hydrophobicoiling agent and crimped type polyolefin based structural synthetic fiber is deformed with a geometrical modification were used for the reinforcing fiber. The compressive tests have been performed to evaluate the strength property of high strength concrete depending on the surface treatment method of fiber. The bonding property between the high strength concrete and the CFRP rebar was evaluated by means of direct bonding test. The test results indicated that the surface treatment method of fiber effect on the bonding behavior of high strength concrete and CFRP rebar. Also, as the development and propagation of splitting cracks were controled by adding fibers into the high strength concrete, the bonding behavior, bond strength and relative bonding strength of CFRP rebar and high strength concrete were significantly improved.

An Experimental Study for Improving the Strength of High Strength Concrete with Silica Fume (실리카흄을 혼합한 고강도콘크리트의 강도향상을 위한 실험적 연구)

  • Moon, Han Young;Moon, Dae Joong;Shin, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1069-1080
    • /
    • 1994
  • For complying with the demand of developing high strength concrete, the high strength concrete with higher cement contents and lower water-cement ratio using high range water reducing admixture has been manufactured. In this study, for the purpose of improving the strength of concrete, concrete with silica fume and gypsum was produced so that it was acquired to high compressive strength of $1,058kg/cm^2$, $1,170kg/cm^2$ at age 28 and 91 days, respectively. But neither tensile strength nor modulus of elasticity were highly improved although the compressive strength of the concrete increased. And it was concluded that a higher slump loss of fresh high strength concrete and interior temperature increment of concrete in according to elapsed time than convential concrete should be solved.

  • PDF

An Experimental Study on the Hydration and Mechanical Properties of High Strength Concrete with High Calcium Sulfate Cement (고황산염시멘트를 이용한 고강도콘크리트의 수화 및 역학적 특성에 관한 실험적 연구)

  • 박승범;임창덕
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.129-138
    • /
    • 1993
  • 프리텐션 방식 원심력 고강도 콘크리트 말뚝[KS F 4306]제조에 관한 실험적 연구로써 고황산염시멘트를 이용한 800kg/$ extrm{cm}^2$이상의 고강도콘크리트 제조시 수화 특성검토와 콘크르트 조직내의 기공율과 압축강도간의 상관식을 도출하여 고강도 발현기구를 규명하였으며 콘크리트 압축 및 휨강도간의 상관식 유도와 내구성 측면에서의 내동해성, 건조수축, 화학저항성등을 보통 포틀랜드 시멘트와 비교 고찰한 결과, 고황상염시멘트의 내구성이 우수함을 확인하였다.