• Title/Summary/Keyword: 고각

Search Result 99, Processing Time 0.029 seconds

Propagation Factor Based Elevation Estimation Algorithm Selection Method in Multipath Situation (다중경로 상황에서의 전파 인자 기반 고각 추정 알고리즘 선택기법)

  • Daihyun Kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.172-177
    • /
    • 2024
  • This paper presents a method to overcome the problem of increasing elevation estimation error when estimating elevation in a multipath situation with radar. A multipath situation means that radar reception signals reflected from the same target come from multiple paths. In non-multipath, the monopulse method is accurate. For the opposite case, the least square error method is accurate. In multipath situation and when the elevation angle is very low, a singular occurs where the least square error estimate diverges. This singular was identified based on the propagation factor, and monopulse and least square error estimation methods were selectively used. As a result, we succeeded in increasing the accuracy of elevation estimation. MATLAB simulations were performed to verify the method proposed in this paper.

Stabilization of Elevation for Gunner Primary Sight Using Variable Structure Control (가변구조제어에 의한 조준경 고각 안정화)

  • 허남수;이정규;김주상;김중완;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1649-1656
    • /
    • 1991
  • 본 연구에서는 가변구조제어에 의한 조준경 고각 안정화를 모색하였다. 이 를 위해 조준경 고각 안정화 시스템의 운동 방정식을 이용하여 가변구조제어기를 설계 하였으며 방정식을 이용하여 가변구조제어기를 설계하였으며 실제 주행시험결과 측정 된 차량의 각속도를 외란으로 사용하여 컴퓨터 시뮬레이션하여 가변구조제어에 의한 조준경 고각 안정화가 동적안정도를 충족시킴을 보였다.

An Analysis on the Degradation of Elevation Angle Accuracy Due to the Multi-Path Effect Using a Phased Array Antenna and the Beam Pattern Optimization to Minimize Its Degradation (위상배열 안테나를 활용한 다중 경로 효과에 의한 고각 정확도 열화 분석 및 열화 최소화를 위한 빔 패턴 최적화)

  • Kim, Young-Wan;Lee, JaeMin;Chae, Heeduck;Jin, Hyung-suk;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1036-1043
    • /
    • 2016
  • In this paper, an analysis about the elevation angle accuracy degradation of an APAR(Airport Precision Approach Radar) due to the multi-path effect using a phased array antenna was performed. An APAR installed around a runway of airport will be continuously affected in a runway surface of the fixed environment. In this paper, an analysis about the elevation angle accuracy degradation of APAR due to the multi-path effect of runway surface was conducted through a calculation of monopluse slope and sum/difference beam pattern analysis of array antenna. Also, a difference pattern for monopulse to minimize this degradation was optimized in an appropriate configuration to improve a elevation angle accuracy. Finally, a degree of improvement of elevation angle accuracy was confirmed by calculating a monopulse slope including the ground reflection after applying optimized difference patterns of array antenna.

Error Model Analysis and Performance Evaluation for the Rapid Alignment Technique of Projectile Navigation System in Inclined Launch Systems (경사 고각 발사 시스템에서의 발사체 항법장치 급속 초기정렬기법에 대한 오차모델 분석 및 성능평가)

  • Park, Sebeen
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.195-204
    • /
    • 2022
  • In this paper, we described the rapid initial alignment techniques of projectile navigation system for use in inclined launch systems. One-shot alignment technique, one of the rapid initial alignment techniques, is possible to align a navigation system within seconds because it uses external information from an launcher navigation system. However, since it has only been used in vertical launch systems, its performance in inclined launch systems has not been verified. Therefore, this paper analyzed the error elements that occur when the one-shot alignment technique is applied to the inclined launch system, and introduced a method to improve the alignment performance by minimizing those errors. Additionally, By simulating and testing the performance of the proposed alignment technique, it was verified that it is effective even in an environment where a real navigation system is used.

A Study on S-Band Phased Array Antenna System for Receiving LEO Satellite Telemetry Signals (저궤도 위성 원격측정데이터 신호 수신을 위한 S-대역 위상배열안테나 시스템 연구)

  • Lee, Dong-Hyo;Seo, Jung-Won;Lee, Myoung-Sin;Chung, Daewon;Lee, Dongkook;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.211-218
    • /
    • 2022
  • This paper presents a S-band phased array antenna system for receiving LEO satellite telemetry signals. The proposed antenna, which is performed to be beam-tiled along the elevation direction, consists of 16 sub-array assemblies, 16 active circuit modules, a perpendicular feed network and a control/power unit. In order to precisely track an LEO satellite, the developed antenna is placed with its elevation axis along the projected trajectory of the satellite on the earth. The center of antenna aperture is facing to the maximum elevation angle in the LEO trajectory. The beam-tilted angles for tracking LEO satellite are obtained by calculating accurately satellite points. Satellite tracking measurements are carried out in the range of ±30° with the respect to the maximum elevation angle. The S/N ratio of 16.5 dB and the Eb/No of 13.3 dB at the maximum elevation angle are obtained from the measurements. The measured result agrees well with the pre-analyzed system margin.

A Study of Detection Range for the Radar of Elevation Angle Changed (고각변경 레이다의 탐지거리 연구)

  • Lim Joong-Soo;Jung Chul-Gu;Chae Gyoo-Soo;Park Young-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.238-241
    • /
    • 2005
  • 본 논문에서는 고각이 변경되는 레이다의 탐지거리에 대해서 연구하였다. 일반적으로 레이다의 탐지거리는 지구의 곡율에 의한 지형적 영향과 전파의 감쇄로 인한 전력밀도에 의해서 결정되는 요소가 있다. 레이다의 탐지거리의 앞의 두 가지가 모두 만족되어야하며, 레이다의 고각이 변경되면 지형에 의한 탐지거리가 변경되므로 전체적인 탐지 거리에 변화가 생긴다. 본 논문에서는 레이다의 고각의 변경에 따른 가시거리 변경을 중점적으로 기술하였다.

  • PDF

Optimum Elevation Angle Control of the Receiving Antenna for the Long Distance Air-Ground Common Data Link (장거리 공중-지상 영상정보용 데이터링크의 수신 안테나 최적 고각 제어 방법)

  • Ryu, Young-jae;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1528-1538
    • /
    • 2016
  • Common data link systems are designed to transmit the imaginary and signal intelligence data at long distance air-ground line of sight(LOS) link. In this paper, we analyze the received power variation according to the communication distance of the common data link using curved earth 2-Ray model suitable for received signal power analysis of long distance air-ground wireless channel. We propose optimal elevation angle control method of the receiving antenna to reduce a power variation caused by ground-reflected wave. Proposed method can get additional link margin compared to the conventional method without any additional hardware performance enhancement.

A Study on Effect of the Solar Elevation on the Ship IR Signature (태양고각 변화에 따른 함정 적외선신호에 관한 연구)

  • Kim, Yoon-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.38-45
    • /
    • 2010
  • A study on the infrared signature of a naval ship by the solar elevation was performed using the well known IR signature analysis software, ShipIR/NTCS. The contrast radiant intensity of a ship against the Eastern Sea background from sunrise to noon was investigated. Monthly averaged climate data for both January and July were applied to investigate the seasonal change in the signature. A study on the signature for different ship speeds was also carried out. Simulation results showed that the maximum signature in both wave-bands for a sea-level observer occurred at around 25~35 degrees of solar elevation and was highly dependent on the ship geometry rather than the solar irradiance.

A Study on Multi Target Elevation Angle Estimation of Hight Directivity using Multi Stacked Beam Forming (다중 스택 빔 형성을 이용한 고 지향성의 다중 목표물 고각 추정에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.129-135
    • /
    • 2011
  • In this paper, we propose a multi target's elevation angle estimation method using multi beam forming technique. This method make a stacked beam to digital processing a received signal in array element. There can be desired receiving beam to application weight value at antenna element in beam forming. Currently, we are to make multi stacked beam using fast fourier transform in stead of phase shifter to be a computer performance much improvement. Also, we improve multi beam directivity using beam steering error correction technique in order to beam steering to desired direction in receiver. Through simulation, we show that the proposed elevation estimation method based on fast fourier transform and beam steering error correction technique, improves th performance of target estimation compared to previous method.

Sidelobe Distortion Analysis of Offset Parabolic Antenna by Scatterer (산란체에 의한 오프셋 파라볼라 안테나 부엽 왜곡 분석)

  • Kim, Seungho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • Offset parabolic antenna have been widely used for satellite communication system. To locate feedhorn on antenna system, it requires arbitrary structure which forces to fix on system. However, arbitrary scatterer increases sidelobe level of elevation axis. To solve this problem, we need to predict which angle level is increased by arbitrary scatterer simply. Because conventional simulation method takes a long time to simulate parabolic antenna system and needs exclusive software. In this paper we can calculate sidelobe angle simply by using raytracing method, check coincidence between calculated and simulated result and show how arbitrary scatterer affects sidelobe lavel of elevation axis of offset parabolic antenna depending on angle and location of arbitrary structure.