• Title/Summary/Keyword: 계통연계형 태양광 시스템

Search Result 284, Processing Time 0.038 seconds

Robust maximum power point tracker using sliding mode controller for the single-stage grid-connected photovoltaic system (슬라이딩 모드 제어기를 사용한 계통연계형 태양광 발전시스템의 강인한 최대전력점 제어기 설계)

  • Kim, Il-Song;Park, Jin-Sik;Jung, Sin-Myung;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.340-342
    • /
    • 2005
  • A sliding mode controller for the grid-connected photovoltaic system has been presented. This controller is constructed from the time-varying sliding surface In order to control the sinusoidal inductor current and solar array power simultaneously. The proposed controller can achieve the tight regulation of current and power under the parameter variation environment.

  • PDF

Development of a 50kW Photovoltaic Power Generation System for Gird Connection(I) (50 kW급 계통연계형 태양광 발전시스템 개발(I))

  • Ahn, K.S.;Lim, H.C.;Hwang, I.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.31-33
    • /
    • 1999
  • In this paper, a operating characteristics of the 50 kW grid-connected Photovoltaic(PV) Power system which is by means of initial PV datum analyzing is reported. The development of a 50 kW class photovoltaic power generation system including a DC/AC inverter is suggested to investigate the system performance for grid connection. The results of the demonstration test of a 50 kW class grid-connected PV system show that the system utilization rate is 15.6% and the inverter efficiency is 94% at 80% load.

  • PDF

A characteristics on the generating Power of a 3-Phase Photovoltaic Power system for grid-connection (3상 계통연계형 태양광 발전시스템의 출력특성)

  • Ahn, Kyo-Sang;Lim, Hee-Chun;Hwang, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1171-1173
    • /
    • 2000
  • This paper was analyzed the high-frequency harmonics, power conversion rate, results of the system's monitor, and measuring data of the system power output of a 3-phase photovoltaic power system for grid-connection. The photovoltaic power system consists of a 3-phase inverter array, and data acquisition system. The result of an analyzing data of the 50 kW class grid-connected photovoltaic system showed the stable behavior in utility-interactive operation.

  • PDF

The Construction and Operating Characteristics analysis of Utility interactive PV power generation system (계통연계형 태양광 발전시스템의 운전특성 해석과 문제점 분석)

  • Hong, D.S.;Koh, K.H.;Koh, H.S.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.334-336
    • /
    • 2001
  • The photovoltaic power generation system has a great future as clean energy instead of fossil fuel which has many environmental problems such as exhausted gas or air pollution. In a utility interactive photovoltaic generation system, a three-phase inverter is used for the connection between the photovoltaic array and the utility. This paper presents a three phase inverter for photovoltaic power system with current controller, voltage controller PLL control system and the phase detector of interactive voltage by using do transformation. The proposed inverter system provides a sinusoidal are current for domestic loads and the utility line with unity power factor. The results of the operated from January to October show the system characteristics.

  • PDF

Highly Efficient MOSFET Inverter for Single-Phase Grid-Connected Photovoltaic Power Generation Systems (단상 계통연계형 태양광 발전 시스템용 고효율 MOSFET 인버터)

  • Ryu, Hyung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2014
  • A highly efficient MOSFET inverter for single-phase grid-connected photovoltaic power generation systems is presented in this paper. It is a full-MOSFET version of the conventional transformerless full-bridge inverter with dual L-C filters using unipolar PWM. The key idea lies on smart pre switching(SPS), which can make the large switching loss due to a poor reverse recovery of the MOSFET's body diode reduced dramatically. The validity of the proposed inverter is verified by experiment.

An analysis on the operating characteristics of 50kW Photovoltaic Power System (50 kW급 계통연계형 태양광 발전시스템 장기 실증 운전)

  • Kim, Y.S.;Ahn, K.S.;Lim, H.C.;Oh, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1788-1790
    • /
    • 2005
  • In this paper, an operating characteristics of a 50 kW gird-connected photovoltaic(PV) power system was analysed from 2000 to 2004. The construction of the PV system includes a 3-phase inverter for grid connection, PV module, distribution box, and data monitoring system. The major results of the demonstration test of the 50 kW class gird-connected PV system showed that efficiency of PV system was 11.13%, and the conversion efficiency of the inverter was 92% at a 50% load.

  • PDF

The bidirectional DC module type PCS design for the System Inter Connection PV-ESS of Secure to Expandability (계통 연계 PV-ESS 확장성 확보를 위한 병렬 DC-모듈형 PCS 설계)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Byung-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.56-69
    • /
    • 2021
  • In this paper, the PV system with a link to the commercial system needs some advantages like small capacity, high power factor, high reliability, low harmonic output, maximum power operation of solar cell, and low cost, etc. as well as the properties of inverter. To transfer the PV energy of photovoltaic power generation system to the system and load, it requires PCS in both directions. The purpose of this paper is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. In order to achieve these purpose, 5 step process of operation mode algorithm were used according to the solar insolation amount and load capacity and the controller for charging/ discharging control was designed. For bidirectional and effective energy transfer, the bidirectional converter and battery at DC-link stage were connected and the DC-link voltage and inverter output voltage through the interactive inverter were controlled. In order to prove the validity of the suggested system, the simulation using PSIM was performed and were reviewed for its validity and stability. The 3[kW] PCS was manufactured and its test was conducted in order to check this situation. In addition, the system characteristics suggested through the test results was verified and the PCS system presented in this study was excellent and stronger than that of before system.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

Development of 3kW Smart Home Energy Server System (3kW급 스마트 홈에너지 서버 시스템 개발)

  • Kim, Minjae;Jung, Ahjin;Yang, Daeki;Hong, Seokyong;Choi, Sewan;Cho, Junseok
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.530-531
    • /
    • 2013
  • 본 논문에서는 비상전원 기능을 갖는 고효율, 고신뢰성의 3kW급 스마트 홈에너지 서버 시스템을 제안한다. 제안하는 시스템은 Li-Ion 배터리 충 방전용 양방향 컨버터, 태양광 발전용 단방향 컨버터, 양방향 계통 연계형 인버터로 구성되어 있다. 제안하는 시스템의 운전모드를 제시하고 3kW급 시작품의 실험을 통하여 타당성을 검증하였다.

  • PDF

A Study on the Grid Connected Battery Charge System (삼상 계통연계형 배터리 급속충전시스템에 관한 연구)

  • Lee, Young Jin;Han, DH;Ban, CH;Kim, Yeong-U;Seong, Baek-Seo;Eun, JM;Choe, Gyu Ha
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.367-368
    • /
    • 2010
  • 본 논문에서는 삼상 AC-DC 컨버터와 강압컨버터를 이용한 배터리 충전장치를 제안한다. 제안 하는 배터리 충전시스템은 상용전원뿐만 아니라 태양광시스템의 MPPT제어를 통하여 최대전력을 공급받아 급속충전시스템의 CV/CC(정전압/정전류) 모드 제어를 통해 배터리를 빠르게 충전한다.

  • PDF