• Title/Summary/Keyword: 계층 알고리즘

Search Result 1,086, Processing Time 0.037 seconds

Fuzzy Cognitive Map-Based A, pp.oach to Causal Knowledge Base Construction and Bi-Directional Inference Method -A, pp.ications to Stock Market Analysis- (퍼지인식도에 기초한 인과관계 지식베이스 구축과 양방향 추론방식에 관한 연구 -주식시장 분석에의 적용을 중심으로-)

  • 이건창;주석진;김현수
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.1-22
    • /
    • 1995
  • 본 연구에서 퍼지인식도(Fuzzy Cognitive Map) 개념을 기초로 하여 (1) 특정 문제영역에 대한 전문가의 인과관계 지식(causal knowledge)을 추출하는 알고리즘을 제시하고, (2) 이 알고리즘에 기초하여 작성된 해당 문제영역에 대한 여러 전문가들의 인과관계 지식을 계층별로 분해하여, (3) 해당 계층간의 양방향 추론이 가능한 추론메카니즘을 제시하고자 한다. 특정 문제영역에 있어서의 인과관계 지식이란 해당 문제를 구성하는 여러 개념간에 존재하는 인과관계를 표현한 지식을 의미한다. 이러한 인과관계 지식은 기존의 IF-THEN 형태의 규칙과는 달리 행렬형태로 표현되기 때문에 수학적인 연산이 가능하다. 특정 문제영역에 대한 전문가의 인과관계 지식을 추출하는 알고리즘은 집합연산에 의거하여 개발되었으며, 특히 상반된 의견을 보이는 전문가들의 의견을 통합하여 하나의 통합된 인과관계 지식베이스를 구축하는데 유용하다. 그러나, 주어진 문제가 복잡하여 다양한 개념들이 수반되면, 자연히 인과관계 지식베이스의 규모도 커지게 되므로 이를 다루는데 비효율성이 개재되기 마련이다. 따라서 이러한 비효율성을 해소하기 위하여 주어진 문제를 여러계측(Hierarchy)으로 분해하여, 해당 계층별로 인과관계 지식베이스를 구축하고 각 계층별 인과관계 지식베이스를 연결하여 추론하는 메카니즘을 개발하면 효과적인 추론이 가능하다. 이러한 계층별 분해는 행렬의 분해와 같은 개념으로도 이해될 수 있다는 특징이 있어 그 연산이 간단명료하다는 장점이 있다. 이와같이 분해된 인과관계 지식베이스는 계층간의 추론메카니즘을 통하여 서로 연결된다. 이를 위하여 본 연구에서는 상향 또는 하향방식이 추론이 가능한 양방향 추론방식을 제시하여 주식시장에서의 투자분석 문제에 적용하여 그 효율성을 검증하였다.

  • PDF

Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection (다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법)

  • Kim, Jee-Hyun;Lee, Seyoung;Kim, Yerim;Ahn, Seo-Yeong;Park, Saerom
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF

무선센서네트워크 환경에서 계층적 라우팅 프로토콜의 성능개선을 위한 Short-cut 라우팅 알고리즘

  • Gang, Mun-Gyeong;Jan, Gyo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.526-529
    • /
    • 2007
  • 무선센서네트워크 환경에서 활용될 수 잇는 대표적인 계층적 라우팅 프로토콜로는 Zigbee(지그비) 계층구조 라우팅과 IETF의 6LoWPAN WG에 드래프트로 제출되었던 HiLow 프로토콜 등이 있다. 이들 계층구조 라우팅 프로토콜은 깊이 우선(Depth-first) 방식과 폭 우선(Width-first) 방식을 각각 사용하여 자동 주소 할당을 수행한 후 이를 이용해 계층적 경로 배정이 되도록 한다. 이에 따라 망상의 노드들이 물리적으로 가까운 위치에 존재하더라도 경로는 계층적으로 제공되어 데이터 전달에 많은 흡 수가 소요된다. 본 논문에서는 이러한 경로 배정 시 발생되는 비효율성을 개선하고 싱크(Sink) 주위 노드의 에너지 소모율을 줄일 수 있는 경로 배정 알고리즘을 제안한다.

  • PDF

A Heuristic Leaf Ordering Algorithm for Hierarchical Clustering of DNA Microarray Data (DNA 마이크로어레이 데이터의 계층적 클러스터링에 대한 리프오더링 알고리즘 개발)

  • 여상수;이정원;김성권
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.706-708
    • /
    • 2002
  • DNA 마이크로어레이 실험으로 나온 데이터들을 클러스터링하는 것은 유전자의 기능과 유전자의 네트워크를 파악해 나가는데 도움을 주게 된다. 계층적 클러스터링(hierarchical clustering) 방법은 그러한 실험 분석에서 가장 보편적으로 사용되는 방법이다. 본 논문에서는 계층적 클러스터링을 통해서 나온 결과 트리에 대해서, 트리의 리프 노드들을 재배열함으로써, 인접한 리프 노드들간의 거리의 종합이 최소가 되도록 하는 문제인 리프오더링 방법을 다루었고, 새로운 리프오더링 알고리즘을 제안하였다. 그리고, 이를 포함한 여러 리프오더링 방법들에 대한 실험 및 생물학적인 분석을 하였다.

  • PDF

Context-Based Hierarchical Enumerative Coding for Lossless Bi-level Image Compression (무손실 이진 영상 압축을 위한 컨텍스트 기반 계층적 열거 부호화)

  • 임재혁;정제창
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2000.11b
    • /
    • pp.87-92
    • /
    • 2000
  • 본 논문에서는 컨텍스트 기반 계층적 열거 부호화를 이용한 무손실 이진 영상 압축 알고리즘을 제안한다. 이진 영상내에 존재하는 인접한 화소간의 상호상관성을 이용하여 이진 영상을 1차원의 수열로 재구성하고, 이에 대해 계층적 열거 부호화를 실행한다. 제안하는 알고리즘은 덧셈 및 비교 연산만으로 구현이 가능하므로 그 복잡도가 매우 낮을 뿐만 아니라, CCITT 테스트 영상을 대상으로 한 부호화 성능 실험에서 우수한 성능을 나타낸다. 부호화 성능 비교에서 이진 영상 부호화 국제표준인 JBIG, G3, G4 및 GIF에 비해 우수한 압축 성능을 보인다.

  • PDF

A Text Classification System for Hierarchical Categories (계층구조 카테고리를 가지는 텍스트 분류 시스템)

  • 박지호;김진상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.128-130
    • /
    • 2000
  • 인터넷의 발전으로 온라인 문서들의 양이 급증하여 문서의 자동 분류 기술의 중요성이 증대되고 있다. 문서를 미리 정의된 카테고리로 분류할 때 카테고리는 평면구조보다 계층구조를 갖도록 하는 것이 사용자의 측면에서 볼 때 훨씬 더 자연스럽다. 본 논문에서는 계층구조 카테고리를 가지는 문서를 분류하는 방법을 연구하고 실제 20개의 유스넷 뉴스그룹 문서들을 분류하도록 시험하였다. 여기서 사용한 알고리즘은 하이퍼링크 정보를 이용하여 웹 문서분류를 목적으로 개발된 IBM의 TAPER(taxonomy and path enhanced retrieval system) 알고리즘을 변형한 것이다.

  • PDF

Scalable Video Encoding Method based on Perceptual Importance (인지적 중요성 기반 스케일러블 비디오 부호화 기법)

  • Lee, Hyunho;Kim, Taewan;Lee, Sanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.565-566
    • /
    • 2011
  • 본 논문은 H.264/AVC에서 사용하는 기존의 SVC 알고리즘에 추가적으로 인간의 시각적 중요도 정보를 활용하는 기법을 제안한다. 이 접근방식에서 기존의 SVC 알고리즘을 수정하기 위해 사람의 시각 체계가 균일하지 않게 표본화를 하는 정보가 이용된다. 우리는 각각의 화질계층에서 가장 중요한 지역의 크기를 조절함으로써 효율성과 공정성 모두 강조하는 새로운 자원 할당 알고리즘을 제안하였다. 효율성은 제안하는 SVC의 낮은 화질계층에서, 공정성은 중요한 지역의 크기를 크게 하는 높은 화질계층에서 강조된다. 실험결과는 제안하는 SVC 알고리즘이 압축된 비디오의 주관적인 시각적 화질을 개선하는 것을 보여준다.

  • PDF

Electromyogram Pattern Recognition by Hierarchical Temporal Memory Learning Algorithm (시공간적 계층 메모리 학습 알고리즘을 이용한 근전도 패턴인식)

  • Sung, Moo-Joung;Chu, Jun-Uk;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper presents a new electromyogram (EMG) pattern recognition method based on the Hierarchical Temporal Memory (HTM) algorithm which is originally devised for image pattern recognition. In the modified HTM algorithm, a simplified two-level structure with spatial pooler, temporal pooler, and supervised mapper is proposed for efficient learning and classification of the EMG signals. To enhance the recognition performance, the category information is utilized not only in the supervised mapper but also in the temporal pooler. The experimental results show that the ten kinds of hand motion are successfully recognized.

Development of Clustering Algorithm and Tool for DNA Microarray Data (DNA 마이크로어레이 데이타의 클러스터링 알고리즘 및 도구 개발)

  • 여상수;김성권
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.544-555
    • /
    • 2003
  • Since the result data from DNA microarray experiments contain a lot of gene expression information, adequate analysis methods are required. Hierarchical clustering is widely used for analysis of gene expression profiles. In this paper, we study leaf-ordering, which is a post-processing for the dendrograms output by hierarchical clusterings to improve the efficiency of DNA microarray data analysis. At first, we analyze existing leaf-ordering algorithms and then present new approaches for leaf-ordering. And we introduce a software HCLO(Hierarchical Clustering & Leaf-Ordering Tool) that is our implementation of hierarchical clustering, some of existing leaf-ordering algorithms and those presented in this paper.

Fuzzy System Modeling Using New Hierarchical Structure (새로운 계층 구조를 이용한 퍼지 시스템 모델링)

  • 김도완;김문환;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.127-130
    • /
    • 2002
  • 본 논문은 수학적으로 모델링하기 어려운 비선형 시스템을 위한 새로운 계층적 규칙 기반 퍼지 시스템 모델링 기법을 제안한다. 제안된 기법은 퍼지 규칙 기반 구조를 상위 규칙 기반과 하위 규칙 기반으로 나누어 계층화 시키는 것이다 계층적 퍼지 규칙을 적용함으로써 퍼지 규칙을 효율적이고 논리적으로 이용할 수 있다. 퍼지 규칙의 효율적, 논리적 사용은 퍼지 시스템의 정확성을 높일 수 있고 구조를 명료화 시킬 수 있다. 유전 알고리즘은 제안된 퍼지 규칙의 파라미터 최적화 과정에 이용된다. 가스로 데이터에 대한 퍼지 모델링 결과를 통해서 제안된 기법의 타당성 및 효용성을 검증하고 타 기법의 결과와 비교한다.

  • PDF