• Title/Summary/Keyword: 계층 알고리즘

Search Result 1,086, Processing Time 0.026 seconds

Detection of Frame Deletion Using Convolutional Neural Network (CNN 기반 동영상의 프레임 삭제 검출 기법)

  • Hong, Jin Hyung;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.886-895
    • /
    • 2018
  • In this paper, we introduce a technique to detect the video forgery by using the regularity that occurs in the video compression process. The proposed method uses the hierarchical regularity lost by the video double compression and the frame deletion. In order to extract such irregularities, the depth information of CU and TU, which are basic units of HEVC, is used. For improving performance, we make a depth map of CU and TU using local information, and then create input data by grouping them in GoP units. We made a decision whether or not the video is double-compressed and forged by using a general three-dimensional convolutional neural network. Experimental results show that it is more effective to detect whether or not the video is forged compared with the results using the existing machine learning algorithm.

Design of a Closed-Loop Stepping Motor Drive based on Real-Time Ethernet (실시간 이더넷 기반 스테핑 모터 드라이브 개발)

  • Kim, Jin-Ho;Ha, Kyung-Jae
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.45-52
    • /
    • 2019
  • This paper proposes the design of a closed-loop stepping motor drive for real-time Ethernet (RTE), which can be easily applied to a variety of RTE protocols. The proposed design is divided into a closed-loop step motor drive which can be reused for various types of RTE protocol and RTE module developed for each specific RTE protocol. It is based on a layered architecture so that the motion control algorithm can be easily reused independently of the RTE protocol and motion profile. To verify the proposed design, closed-loop motor drives based on EtherCAT and Mechatrolink III were developed and their performances were evaluated. Cycle time was measured to verify the real-time communication performance of the developed EtherCAT and Mechatrolink III based motor drive. As a result, the EtherCAT was 7.5 times faster than the Mechatrolink III when 32 motor drives were connected.

A Study on the Analytical Model of Shear Wall Considering the Current Status of Structural Design (구조설계실무 현황을 고려한 전단벽 해석모형에 관한 고찰)

  • Jung, Sung-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.3-10
    • /
    • 2018
  • While computer environments have been dramatically developed in recent years, as the building structures become larger, the structural analysis models are also becoming more complex. So there is still a need to model one shear wall with one finite element. From the viewpoint of the concept of FEA, if one shear wall is modeled by one finite element, the result of analysis is not likely accurate. Shear wall may be modelled with various finite elements. Among them, considering the displacement compatibility condition with the beam element connected to the shear wall, plane stress element with in-plane rotational stiffness is preferred. Therefore, in order to analyze one shear wall with one finite element accurately, it is necessary to evaluate finite elements developed for the shear wall analysis and to develop various plane stress elements with rotational stiffness continuously. According to the above mentioned need, in this study, the theory about a plane stress element using hierarchical interpolation equation is reviewed and stiffness matrix is derived. And then, a computer program using this theory is developed. Developed computer program is used for numerical experiments to evaluate the analysis results using commercial programs such as SAP2000, ETABS, PERFORM-3D and MIDAS. Finally, the deflection equation of a cantilever beam with narrow rectangular section and bent by an end load P is derived according to the elasticity theory, and it is used to for comparison with theoretical solution.

Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 부정맥 분류 시스템의 설계)

  • Kim, Seong-Woo;Kim, In-Ju;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Recently, many researches have been actively to diagnose symptoms of heart disease using ECG signal, which is an electrical signal measuring heart status. In particular, the electrocardiogram signal can be used to monitor and diagnose arrhythmias that indicates an abnormal heart status. In this paper, we proposed 1-D convolutional neural network for arrhythmias classification systems. The proposed model consists of deep 11 layers which can learn to extract features and classify 5 types of arrhythmias. The simulation results over MIT-BIH arrhythmia database show that the learned neural network has more than 99% classification accuracy. It is analyzed that the more the number of convolutional kernels the network has, the more detailed characteristics of ECG signal resulted in better performance. Moreover, we implemented a practical application based on the proposed one to classify arrythmias in real-time.

Analysis of Defense Method for HTTP POST DDoS Attack base on Content-Length Control (Content-Length 통제기반 HTTP POST DDoS 공격 대응 방법 분석)

  • Lee, Dae-Seob;Won, Dong-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.809-817
    • /
    • 2012
  • One of the OSI 7 Layer DDoS Attack, HTTP POST DDoS can deny legitimate service by web server resource depletion. This Attack can be executed with less network traffic and legitimate TCP connections. Therefore, It is difficult to distinguish DDoS traffic from legitimate users. In this paper, I propose an anomaly HTTP POST traffic detection algorithm and http each page Content-Length field size limit with defense method for HTTP POST DDoS attack. Proposed method showed the result of detection and countermeasure without false negative and positive to use the r-u-dead-yet of HTTP POST DDoS attack tool and the self-developed attack tool.

Camera Model Identification Using Modified DenseNet and HPF (변형된 DenseNet과 HPF를 이용한 카메라 모델 판별 알고리즘)

  • Lee, Soo-Hyeon;Kim, Dong-Hyun;Lee, Hae-Yeoun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.8
    • /
    • pp.11-19
    • /
    • 2019
  • Against advanced image-related crimes, a high level of digital forensic methods is required. However, feature-based methods are difficult to respond to new device features by utilizing human-designed features, and deep learning-based methods should improve accuracy. This paper proposes a deep learning model to identify camera models based on DenseNet, the recent technology in the deep learning model field. To extract camera sensor features, a HPF feature extraction filter was applied. For camera model identification, we modified the number of hierarchical iterations and eliminated the Bottleneck layer and compression processing used to reduce computation. The proposed model was analyzed using the Dresden database and achieved an accuracy of 99.65% for 14 camera models. We achieved higher accuracy than previous studies and overcome their disadvantages with low accuracy for the same manufacturer.

Analysis of the effect of non-face-to-face online SW education program on the computational thinking ability of students from the underprivileged class (비대면 온라인 SW 교육 프로그램이 소외계층 학생의 컴퓨팅 사고력에 미치는 영향 분석)

  • Lee, Jaeho;Lee, Seunghoon
    • Journal of Creative Information Culture
    • /
    • v.7 no.4
    • /
    • pp.207-215
    • /
    • 2021
  • As computational thinking has been noted as an important competency worldwide, SW education was introduced in the 2015 revised curriculum, and SW education has been applied to the curriculum from 2018. However, in a poor educational environment, the educationally underprivileged class is in the blind spot of SW education and is not receiving systematic SW education. Therefore, this study analyzed the effect of conducting a non-face-to-face SW online education program for 267 underprivileged elementary school students in education at a time when non-face-to-face online education was being conducted through the COVID-19 mass infectious disease. As a result of conducting the computational thinking ability test, which abstraction, problem decomposition, algorithm, automation, and data processing, before and after education, the overall score of computational thinking and the score of all five factors were statistically significantly increased(p<0.001). Among the five factors, there was the highest score improvement in data processing score. These results suggest that the non-face-to-face SW online education program is effective in improving the computational thinking ability of elementary school students from the educational underprivileged class.

Design and Implementation of Mobile Continuous Blood Pressure Measurement System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 모바일 연속 혈압 측정 시스템의 설계 및 구현)

  • Kim, Seong-Woo;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1469-1476
    • /
    • 2022
  • Recently, many researches have been conducted to estimate blood pressure using ECG(Electrocardiogram) and PPG(Photoplentysmography) signals. In this paper, we designed and implemented a mobile system to monitor blood pressure in real time by using 1-D convolutional neural networks. The proposed model consists of deep 11 layers which can learn to extract various features of ECG and PPG signals. The simulation results show that the more the number of convolutional kernels the learned neural network has, the more detailed characteristics of ECG and PPG signals resulted in better performance with reduced mean square error compared to linear regression model. With receiving measurement signals from wearable ECG and PPG sensor devices attached to the body, the developed system receives measurement data transmitted through Bluetooth communication from the devices, estimates systolic and diastolic blood pressure values using a learned model and displays its graph in real time.

Predicting Default Risk among Young Adults with Random Forest Algorithm (랜덤포레스트 모델을 활용한 청년층 차입자의 채무 불이행 위험 연구)

  • Lee, Jonghee
    • Journal of Family Resource Management and Policy Review
    • /
    • v.26 no.3
    • /
    • pp.19-34
    • /
    • 2022
  • There are growing concerns about debt insolvency among youth and low-income households. The deterioration in household debt quality among young people is due to a combination of sluggish employment, an increase in student loan burden and an increase in high-interest loans from the secondary financial sector. The purpose of this study was to explore the possibility of household debt default among young borrowers in Korea and to predict the factors affecting this possibility. This study utilized the 2021 Household Finance and Welfare Survey and used random forest algorithm to comprehensively analyze factors related to the possibility of default risk among young adults. This study presented the importance index and partial dependence charts of major determinants. This study found that the ratio of debt to assets(DTA), medical costs, household default risk index (HDRI), communication costs, and housing costs the focal independent variables.

Optimization of the Number of Filter in CNN Noise Attenuator (CNN 잡음감쇠기에서 필터 수의 최적화)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.625-632
    • /
    • 2021
  • This paper studies the effect of the number of filters in the CNN (Convolutional Neural Network) layer on the performance of a noise attenuator. Speech is estimated from a noised speech signal using a 64-neuron, 16-kernel CNN filter and an error back-propagation algorithm. In this study, in order to verify the performance of the noise attenuator with respect to the number of filters, a program using Keras library was written and simulation was performed. As a result of simulation, it can be seen that this system has the smallest MSE (Mean Squared Error) and MAE (Mean Absolute Error) values when the number of filters is 16, and the performance is the lowest when there are 4 filters. And when there are more than 8 filters, it was shown that the MSE and MAE values do not differ significantly depending on the number of filters. From these results, it can be seen that about 8 or more filters must be used to express the characteristics of the speech signal.