• Title/Summary/Keyword: 계층적 인식 알고리즘

Search Result 78, Processing Time 0.023 seconds

Pattern Classification of Chromosome Images using the Image Reconstruction Method (영상 재구성방법을 이용한 염색체 영상의 패턴 분류)

  • 김충석;남재현;장용훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.839-844
    • /
    • 2003
  • To improve classification accuracy in this paper, we proposed an algorithm for the chromosome image reconstruction in the image preprocessing part. also we proposed the pattern classification method using the hierarchical multilayer neural network(HMNN) to classify the chromosome karyotype. It reconstructed chromosome images for twenty normal human chromosome by the image reconstruction algorithm. The four morphological and ten density feature parameters were extracted from the 920 reconstructed chromosome images. The each combined feature parameters of ten human chromosome images were used to learn HMNN(Hierarchical Multilayer Neural Network) and the rest of them were used to classify the chromosome images. The experimental results in this paper were composed to optimized HMNN and also obtained about 98.26% to recognition ratio.

Performance Comparison of Clustering using Discritization Algorithm (이산화 알고리즘을 이용한 계층적 클러스터링의 실험적 성능 평가)

  • Won, Jae Kang;Lee, Jeong Chan;Jung, Yong Gyu;Lee, Young Ho
    • Journal of Service Research and Studies
    • /
    • v.3 no.2
    • /
    • pp.53-60
    • /
    • 2013
  • Datamining from the large data in the form of various techniques for obtaining information have been developed. In recent years one of the most sought areas of pattern recognition and machine learning method is created with most of existing learning algorithms based on categorical attributes to a rule or decision model. However, the real-world data, it may consist of numeric attributes in many cases. In addition it contains attributes with numerical values to the normal categorical attribute. In this case, therefore, it is required processes in order to use the data to learn an appropriate value for the type attribute. In this paper, the domain of the numeric attributes are divided into several segments using learning algorithm techniques of discritization. It is described Clustering with other data mining techniques. Large amount of first cluster with characteristics is similar records from the database into smaller groups that split multiple given finite patterns in the pattern space. It is close to each other of a set of patterns that together make up a bunch. Among the set without specifying a particular category in a given data by extracting a pattern. It will be described similar grouping of data clustering technique to classify the data.

  • PDF

Performance Evaluation of Face Analysis Algorithms for User Specific Kiosk (사용자 맞춤형 키오스크를 위한 얼굴 분석 기법 성능 비교 연구)

  • Lee, Sang-wook;Noh, Hyun-seok;Park, Ki-hyun;Oh, Won-jeong;Bae, Changseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.949-951
    • /
    • 2022
  • 최근 키오스크의 사용률이 증가함에 따라 키오스크 사용의 어려움을 겪는 정보 취약계층이 존재한다. 키오스크 사용시 메뉴 선택을 키오스크 앞에서 하며, 절차 또한 복잡하다. 또한 키오스크의 높이가 고정되어 있어 휠체어를 타신분, 어린이 등 고정된 높이에 맞지 않는 사람은 사용이 어렵다. 이를 해결하기 위해 맞춤형 추천과 자동 높낮이 조절 키오스트에 대한 연구가 활발하다. 본 논문에서는 사용자 맞춤형 키오스크를 위한 얼굴 분석 기법의 성능 연구 결과를 제시하고 있다. 가장 대표적인 얼굴 분석 알고리즘들로 알려진 MS Azure 얼굴 분석 기법과 네이버 클로바 얼굴 인식 기법에 대한 비교 실험 결과 성별 인식의 경우 MS Azure 기법이 조금 우수했고 나이 분류의 경우에는 비슷한 성능을 보이는 것을 확인할 수 있었다.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we proposes a Convolutional Neural Networks(CNN) equipped with Batch Normalization(BN) for handwritten digit recognition training the MNIST dataset. Aiming to surpass the performance of LeNet-5 by LeCun et al., a 6-layer neural network was designed. The proposed model processes 28×28 pixel images through convolution, Max Pooling, and Fully connected layers, with the batch normalization to improve learning stability and performance. The experiment utilized 60,000 training images and 10,000 test images, applying the Momentum optimization algorithm. The model configuration used 30 filters with a 5×5 filter size, padding 0, stride 1, and ReLU as activation function. The training process was set with a mini-batch size of 100, 20 epochs in total, and a learning rate of 0.1. As a result, the proposed model achieved a test accuracy of 99.22%, surpassing LeNet-5's 99.05%, and recorded an F1-score of 0.9919, demonstrating the model's performance. Moreover, the 6-layer model proposed in this paper emphasizes model efficiency with a simpler structure compared to LeCun et al.'s LeNet-5 (7-layer model) and the model proposed by Ji, Chun and Kim (10-layer model). The results of this study show potential for application in real industrial applications such as AI vision inspection systems. It is expected to be effectively applied in smart factories, particularly in determining the defective status of parts.

Elimination of Redundant Input Information and Parameters during Neural Network Training (신경망 학습 과정중 불필요한 입력 정보 및 파라미터들의 제거)

  • Won, Yong-Gwan;Park, Gwang-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.439-448
    • /
    • 1996
  • Extraction and selection of the informative features play a central role in pattern recognition. This paper describes a modified back-propagation algorithm that performs selection of the informative features and trains a neural network simultaneously. The algorithm is mainly composed of three repetitive steps : training, connection pruning, and input unit elimination. Afer initial training, the connections that have small magnitude are first pruned. Any unit that has a small number of connections to the hidden units is deleted,which is equivalent to excluding the feature corresponding to that unit.If the error increases,the network is retraned,again followed by connection pruning and input unit elimination.As a result,the algorithm selects the most im-portant features in the measurement space without a transformation to another space.Also,the selected features are the most-informative ones for the classification,because feature selection is tightly coupled with the classifi-cation performance.This algorithm helps avoid measurement of redundant or less informative features,which may be expensive.Furthermore,the final network does not include redundant parameters,i.e.,weights and biases,that may cause degradation of classification performance.In applications,the algorithm preserves the most informative features and significantly reduces the dimension of the feature vectors whiout performance degradation.

  • PDF

Analysis of Level of Difficulty of Fingerprint Database by matching Orientation field (Orientation field의 정합을 이용한 지문영상 DB의 난이도 분석)

  • Park Noh-Jun;Moon Ji-Hyun;Kim Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.91-103
    • /
    • 2006
  • This paper proposes a methodology to evaluate the quality and level of difficulty of fingerprint image databases, which leads to objective evaluation for the performance of fingerprint recognition system. Influencing factors to fingerprint matching are defined and the matching performance between two fingerprint images is evaluated using segmentation and orientation filed. In this study, a hierarchical processing method is proposed to measure an orientation field, which is able to improve the matching speed and accuracy. The results of experiments demonstrate that the defined influencing factors can describe the characteristics of fingerprint databases. Level of difficulty for fingerprint databases enables the performance of fingerprint recognition algorithms to be evaluated and compared even with different databases.

Robust Location Tracking Using a Double Layered Particle Filter (이중 구조의 파티클 필터를 이용한 강인한 위치추적)

  • Yun, Keun-Ho;Kim, Dai-Jin;Bang, Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.1022-1030
    • /
    • 2006
  • The location awareness is an important part of many ubiquitous computing systems, but a perfect location system does not exist yet in spite of many researches. Among various location tracking systems, we choose the RFID system due to its wide applications. However, the sensed RSSI signal is too sensitive to the direction of a RFID reader antenna, the orientation of a RFID tag, the human interference, and the propagation media situation. So, the existing location tracking method in spite of using the particle filter is not working well. To overcome this shortcoming, we suggest a robust location tracking method with a double layered structure, where the first layer coarsely estimates a tag's location in the block level using a regression technique or the SVM classifier and the second layer precisely computes the tag's location, velocity and direction using the particle filter technique. Its layered structure improves the location tracking performance by restricting the moving degree of hidden variables. Many extensive experiments show that the proposed location tracking method is so precise and robust to be a good choice for implementing the location estimation of a person or an object in the ubiquitous computing. We also validate the usefulness of the proposed location tracking method by implementing it for a real-time people monitoring system in a noisy and complicate workplace.

Image Retrieval System of semantic Inference using Objects in Images (이미지의 객체에 대한 의미 추론 이미지 검색 시스템)

  • Kim, Ji-Won;Kim, Chul-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.677-684
    • /
    • 2016
  • With the increase of multimedia information such as image, researches on extracting high-level semantic information from low-level visual information has been realized, and in order to automatically generate this kind of information. Various technologies have been developed. Generally, image retrieval is widely preceded by comparing colors and shapes among images. In some cases, images with similar color, shape and even meaning are hard to retrieve. In this article, in order to retrieve the object in an image, technical value of middle level is converted into meaning value of middle level. Furthermore, to enhance accuracy of segmentation, K-means algorithm is engaged to compute k values for various images. Thus, object retrieval can be achieved by segmented low-level feature and relationship of meaning is derived from ontology. The method mentioned in this paper is supposed to be an effective approach to retrieve images as required by users.

Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image (고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구)

  • Hyeopgeon Lee;Young-Woon Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • A convolutional neural network (CNN) is a representative algorithm for implementing artificial neural networks. CNNs have improved on the issues of rapid increase in calculation amount and low object classification rates, which are associated with a conventional multi-layered fully-connected neural network (FNN). However, because of the rapid development of IT devices, the maximum resolution of images captured by current smartphone and tablet cameras has reached 108 million pixels (MP). Specifically, a traditional CNN algorithm requires a significant cost and time to learn and process simple, high-resolution images. Therefore, this study proposes an improved CNN algorithm for implementing an object classification learning model for simple, high-resolution images. The proposed method alters the adjacency matrix value of the pooling layer's max pooling operation for the CNN algorithm to reduce the high-resolution image learning model's creation time. This study implemented a learning model capable of processing 4, 8, and 12 MP high-resolution images for each altered matrix value. The performance evaluation result showed that the creation time of the learning model implemented with the proposed algorithm decreased by 36.26% for 12 MP images. Compared to the conventional model, the proposed learning model's object recognition accuracy and loss rate were less than 1%, which is within the acceptable error range. Practical verification is necessary through future studies by implementing a learning model with more varied image types and a larger amount of image data than those used in this study.

3D Object Modeling and Feature Points using Octree Model (8진트리 모델을 사용한 3D 물체 모델링과 특징점)

  • 이영재
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.599-607
    • /
    • 2002
  • The octree model, a hierarchical volume description of 3D objects, nay be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition and other applications. We present 2D projected image and made pseudo gray image of object using octree model and multi level boundary search algorithm. We present algorithm for finding feature points of 2D and 3D image and finding matched points using geometric transformation. The algorithm is made of data base, it will be widely applied to 3D object modeling and efficient feature points application for basic 3D object research.

  • PDF