• 제목/요약/키워드: 계층적 신경망

검색결과 171건 처리시간 0.026초

데카르트 좌표계 기반 노드 압축을 이용한 효율적인 2차원 연기 합성 (Efficient 2D Smoke Synthesis with Cartesian Coordinates System Based Node Compression)

  • 김동희;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.659-660
    • /
    • 2021
  • 본 논문에서는 데카르트 좌표계 기반으로 노드를 압축함으로써 SR(Super-resolution) 기반 연기 합성을 효율적으로 처리할 수 있는 방법을 제안한다. 제안하는 방법은 다운 스케일링과 이진화를 통하여 연기 시뮬레이션의 계산 공간을 효율적으로 줄이고, 데카르트 좌표계 축을 기준으로 쿼드트리의 말단 노드를 압축함으로써 네트워크의 입력으로 전달하는 데이터 개수를 줄인다. 학습에 사용된 데이터는 COCO 2017 데이터셋이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual)방식과 유사하게 이전 계층의 출력 값을 더해주며 학습한다. 결과적으로 제안하는 방법은 이전 결과에 비해 네트워크로 전달해야 하는 데이터가 압축되어 개수가 줄어드는 결과를 얻었으며, 그로 인해 네트워크 단계에서 필요한 I/O 과정을 효율적으로 처리할 수 있게 되었다.

  • PDF

돌연변이 연산 기반 효율적 심층 신경망 모델 (A Deep Neural Network Model Based on a Mutation Operator)

  • 전승호;문종섭
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권12호
    • /
    • pp.573-580
    • /
    • 2017
  • 심층 신경망은 많은 노드의 층을 쌓아 만든 거대한 신경망이다. 심층 신경망으로 대표되는 딥 러닝은 오늘날 많은 응용 분야에서 괄목할만한 성과를 거두고 있다. 하지만 다년간의 연구를 통해 심층 신경망에 대한 다양한 문제점이 식별되고 있다. 이 중 일반화는 가장 널리 알려진 문제점들 중 하나이며, 최근 연구 결과인 드롭아웃은 이러한 문제를 어느 정도 성공적으로 해결하였다. 드롭아웃은 노이즈와 같은 역할을 하여 신경망이 노이즈에 강건한 데이터 표현형을 학습할 수 있도록 하는데, 오토인코더와 관련된 연구에서 이러한 효과가 입증되었다. 하지만 드롭아웃은 빈번한 난수 연산과 확률연산으로 인해 신경망의 학습 시간이 길어지고, 신경망 각 계층의 데이터 분포가 크게 변화하여 작은 학습율을 사용해야하는 단점이 있다. 본 논문에서는 돌연변이 연산을 사용하여 비교적 적은 횟수의 연산으로 드롭아웃과 동등 이상의 성능을 나타내는 모델을 제시하고, 실험을 통하여 논문에서 제시한 방법이 드롭아웃 방식과 동등한 성능을 보임과 동시에 학습 시간 문제를 개선함을 보인다.

신경망 앙상블을 이용한 인간 성별 인식 (Human Gender Recognition Using Neural Network Ensembles)

  • 류중원;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.555-558
    • /
    • 2001
  • 본 논문에서는 인간 행동의 성별 인식문제를 해결하기 위해 여러 개의 전문가(expert) 신경망의 앙상블로 이루어진 결합 신경망 분류기를 제안한다. 하나는 여러 개의 modular 다층퍼셉트론을 계층형으로 결합한 모텔이고, 다른 하나는 modular 다층퍼셉트론들의 출력값을 의사결정트리로 결합하는 모델이다. 데이터 베이스는 남녀 각 13 명의 데이터로 이루어져 있고, 문 두드리기, 손 흔들기, 물건 들어올리기의 세 가지 동작을, 보통 상태 혹은 화난 상태하에서 10 회씩 반복 수행하여 저장하였다. 행위자의 움직임은 몸에 부착된 6 개의 적외선 센서를 사용하여 기록 되었으며, 2 차원 혹은 3 차원 속도 및 좌표가 그 특징값으로 사용되었다. 앙상블 분류기의 성능을 비교하기 위하여 단일 다층퍼셉트론, 의사결정트리, 자기구성지도 및 support vector machine 을 사용한 실험 결과를 보였다. 실험 결과, 신경망 앙상블 모델이 다른 전통적인 분류기 및 사람에 비하여 훨씬 우수한 성능을 보였음을 알 수 있었다.

  • PDF

최적화된 쿼드트리를 이용한 2차원 연기 데이터의 효율적인 슈퍼 해상도 기법 (Efficient Super-Resolution of 2D Smoke Data with Optimized Quadtree)

  • 최유연;김동희;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.261-264
    • /
    • 2021
  • 본 논문에서는 SR(Super-Resolution)을 계산하는데 필요한 데이터를 효율적으로 분류하고 분할하여 빠르게 SR연산을 가능하게 하는 쿼드트리 기반 최적화 기법을 제안한다. 제안하는 방법은 입력 데이터로 사용하는 연기 데이터를 다운스케일링(Downscaling)하여 쿼드트리 연산 소요 시간을 감소시키며, 이때 연기의 밀도를 이진화함으로써, 다운스케일링 과정에서 밀도가 손실되는 문제를 피한다. 학습에 사용된 데이터는 COCO 2017 Dataset이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual)방식과 유사하게 이전 계층의 출력 값을 더해주며 학습한다. 결과적으로 제안하는 방법은 이전 결과 기법에 비해 약15~18배 정도의 속도향상을 얻었다.

  • PDF

DS/CDMA통신에서 다경로 페이딩 간섭 제거를 위한 반복적 최소 자승 역전파 신경망 알고리즘 (Recursive Least Square Backpropagation Neural Network Algorithm for Rejection of Multi-path Fading Interference in DS/CDMA Communication Systems)

  • 김광준;나상동
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제26권4호
    • /
    • pp.464-471
    • /
    • 1999
  • DS/CDMA 시스템은 이동통신 시스템에서 다중경로, 고의적인 반방해 전파 및 동일대역폭을 공유하기 위한 다중 사용자에 의해 발생되는 협대역 간섭과 부가적인 백색가우시안 잡음을 제거한다. 본 논문에서는 다계층 퍼셉트론을 기반으로 한 역전파 신경망을 이용한 정합필터 채널 모델이 DS/CDMA 이동 통신 시스템에서 직접 순차 확산 스펙트럼의 협대역 간섭을 고려하면서 신호 대 잡음비와 전송 전력비에 따른 컴퓨터시뮬레이션 결과는 역전파 신경망을 이용한 정합 필터의 비트 에러율이 직접 순차 확산 스펙트럼의 RAKE 수신기의 비트 에러 율보다 적음을 입증하였다.

CDMA 하향링크의 간섭제거를 위한 새로운 다계층 신경망의 복잡도 개선에 관한 연구 (Simplified Multilayer Perceptron for Interference Cancellation of CDMA Forward Link)

  • 이봉희;김종민;이상규;한영수;황인관
    • 한국통신학회논문지
    • /
    • 제28권3C호
    • /
    • pp.271-278
    • /
    • 2003
  • 본 논문에서는 CDMA 하향링크에서 최적화가 용이한 새로운 다층 신경망을 제안하고 이를 적용한 신경망 수신기를 레이크 수신기와 비교하여 CDMA 하향링크에서 간섭이 제거되어 성능이 개선되었음을 입증하였다. 새로운 다층신경망은 기존의 다층신경망에 비해 시스템 복잡도가 개선되고 최적화가 용이하면서 기존의 다층신경망과 동일한 간섭제거에 의한 성능 향상 효과를 얻을 수 있어 실제 시스템에 적용하기에 적합하다. CDMA 하향링크에서 요구되는 고속의 데이터 전송을 위해 BLAST를 시작으로 STS, STTC, STC 등 다양한 STD 기술들이 제시되었으나 타사용자의 정보부재로 다중사용자 검파가 불가하고 충분한 수의 안테나를 장착할 수 없는 하향링크의 한계로 실질적으로 채널효율증대 효과가 미흡한 실정이다. [10]-[15]이러한 문제점을 해결하기 위하여 복잡한 채널환경에 대해 적응능력이 뛰어나고, 고속의 병렬처리의 장점을 갖으며, 실시간 구현이 용이한 최적화된 단계층 신경망을 이용해서 다중사용자 간섭을 제거하였다. 여기에 STC 기술들을 접목시킨다면 CDMA 단말기의 획기적인 채널효율증대 가능성을 기대할 수 있을 것이다.

이동 에이전트를 이용한 병렬 인공신경망 시뮬레이터 (The Parallel ANN(Artificial Neural Network) Simulator using Mobile Agent)

  • 조용만;강태원
    • 정보처리학회논문지B
    • /
    • 제13B권6호
    • /
    • pp.615-624
    • /
    • 2006
  • 이 논문은 이동 에이전트 시스템에 기반을 둔 가상의 병렬분산 컴퓨팅 환경에서 병렬로 수행되는 다층 인공신경망 시뮬레이터를 구현하는 것을 목적으로 한다. 다층 신경망은 학습세션, 학습데이터, 계층, 노드, 가중치 수준에서 병렬화가 이루어진다. 이 논문에서는 네트워크의 통신량이 상대적으로 적은 학습세션 및 학습데이터 수준의 병렬화가 가능한 신경망 시뮬레이터를 개발하고 평가하였다. 평가결과, 학습세션 병렬화와 학습데이터 병렬화 성능분석에서 약 3.3배의 학습 수행 성능 향상을 확인할 수 있었다. 가상의 병렬 컴퓨터에서 신경망을 병렬로 구현하여 기존의 전용병렬컴퓨터에서 수행한 신경망의 병렬처리와 비슷한 성능을 발휘한다는 점에서 이 논문의 의의가 크다고 할 수 있다. 따라서 가상의 병렬 컴퓨터를 이용하여 신경망을 개발하는데 있어서, 비교적 시간이 많이 소요되는 학습시간을 줄임으로서 신경망 개발에 상당한 도움을 줄 수 있다고 본다.

균형적인 신체활동을 위한 맞춤형 AI 운동 추천 서비스 (Customized AI Exercise Recommendation Service for the Balanced Physical Activity)

  • 김창민;이우범
    • 융합신호처리학회논문지
    • /
    • 제23권4호
    • /
    • pp.234-240
    • /
    • 2022
  • 본 논문은 직종별 근무 환경에 따른 상대적 운동량을 고려한 맞춤형 AI 운동 추천 서비스 방법을 제안한다. 가속도 및 자이로 센서를 활용하여 수집된 데이터를 18가지 일상생활의 신체활동으로 분류한 WISDM 데이터베이스를 기반으로 전신, 하체, 상체의 3가지 활동으로 분류한 후 인식된 활동 지표를 통해 적절한 운동을 추천한다. 본 논문에서 신체활동 분류를 위해서 사용하는 1차원 합성곱 신경망(1D CNN; 1 Dimensional Convolutional Neural Network) 모델은 커널 크기가 다른 다수의 1D 컨볼루션(Convolution) 계층을 병렬적으로 연결한 컨볼루션 블록을 사용한다. 컨볼루션 블록은 하나의 입력 데이터에 다층 1D 컨볼루션을 적용함으로써 심층 신경망 모델로 추출할 수 있는 입력 패턴의 세부 지역 특징을 보다 얇은 계층으로도 효과적으로 추출 할 수 있다. 제안한 신경망 모델의 성능 평가를 위해서 기존 순환 신경망(RNN; Recurrent Neural Network) 모델과 비교 실험한 결과 98.4%의 현저한 정확도를 보였다.

계층적 학습 기반 다중 콘크리트 손상에 대한 의미론적 분할 (Semantic Segmentation for Multiple Concrete Damage Based on Hierarchical Learning)

  • 심승보;민지영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권6호
    • /
    • pp.175-181
    • /
    • 2022
  • 구조물의 공용연수가 증가함에 따라 각종 성능 저하가 발생한다. 특히 국내 인프라 구조물은 대부분 경제가 성장하는 시기에 집중적으로 건설되었기 때문에 노후 인프라 비율 급증이 최근 주요 이슈가 되고 있다. 인프라의 노후화는 자칫 안전사고로 이어질 수 있으며 인명 피해까지 유발할 수 있다. 이러한 문제를 사전에 예방하기 위하여 주기적이고 정확한 점검 및 유지관리가 필수적이다. 이 같은 이유로 최근 컴퓨터 비전과 딥러닝을 활용하여 다양한 손상을 탐지하는 연구에 대한 수요가 원격점검 혹은 점검자동화 분야에서 증가하고 있다. 따라서 본 논문에서는 콘크리트 손상의 종류를 세 가지로 구분하여 이를 탐지할 수 있는 신경망 구조를 제안했다. 특히 계층적 학습 기법을 통해 보다 정확하게 다양한 손상을 탐지할 수 있는 신경망을 개발하였다. 이 신경망은 2,026장의 손상 영상으로 학습되었고, 508장의 손상 영상으로 실험하였다. 그 결과 67.04%의 평균 중첩 정확도와 52.65%의 F1 점수를 갖는 알고리즘을 완성하였다. 이 같은 손상 탐지 알고리즘은 향후 구조물의 정확한 상태 진단에 활용될 수 있으리라 기대한다.

동적 확장 가능한 다중 계층 신경망에 기반한 음성 질의의 onset 검출 기법 (An Onset Detection Scheme for Vocal Queries Based on Dynamic Expansible MLP)

  • 한병준;노승민;황인준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.422-426
    • /
    • 2007
  • 음성 질의에서 효율적으로 onset을 검출하기 위한 연구는 다양하게 이루어져 왔다. 특히 대부분의 연구는 확률론적 모델에서 큰 성과를 나타내고 있다. 그러나 이러한 모델들은 변화나 확장이 쉽지 않다는 단점을 가지고 있다. 본 논문에서는 동적 확장 가능한 다중 계층 신경망(Dynamic Expansible MLP)을 제안하여, 기존 방법론의 확장 가능성을 모색한다. 또한, 음성 질의의 onset을 검출하기 위해 MLP를 활용하기 위한 모델을 제시한다.

  • PDF