• Title/Summary/Keyword: 계층적 신경망

Search Result 171, Processing Time 0.028 seconds

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

Graph Reasoning and Context Fusion for Multi-Task, Multi-Hop Question Answering (다중 작업, 다중 홉 질문 응답을 위한 그래프 추론 및 맥락 융합)

  • Lee, Sangui;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.319-330
    • /
    • 2021
  • Recently, in the field of open domain natural language question answering, multi-task, multi-hop question answering has been studied extensively. In this paper, we propose a novel deep neural network model using hierarchical graphs to answer effectively such multi-task, multi-hop questions. The proposed model extracts different levels of contextual information from multiple paragraphs using hierarchical graphs and graph neural networks, and then utilize them to predict answer type, supporting sentences and answer spans simultaneously. Conducting experiments with the HotpotQA benchmark dataset, we show high performance and positive effects of the proposed model.

Implementation of the Classification using Neural Network in Diagnosis of Liver Cirrhosis (간 경변 진단시 신경망을 이용한 분류기 구현)

  • Park, Byung-Rae
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.17-33
    • /
    • 2005
  • This paper presents the proposed a classifier of liver cirrhotic step using MR(magnetic resonance) imaging and hierarchical neural network. The data sets for classification of each stage, which were normal, 1type, 2type and 3type, were analysis in the number of data was 231. We extracted liver region and nodule region from T1-weight MR liver image. Then objective interpretation classifier of liver cirrhotic steps. Liver cirrhosis classifier implemented using hierarchical neural network which gray-level analysis and texture feature descriptors to distinguish normal liver and 3 types of liver cirrhosis. Then proposed Neural network classifier learned through error back-propagation algorithm. A classifying result shows that recognition rate of normal is $100\%$, 1type is $82.8\%$, 2type is $87.1\%$, 3type is $84.2\%$. The recognition ratio very high, when compared between the result of obtained quantified data to that of doctors decision data and neural network classifier value. If enough data is offered and other parameter is considered this paper according to we expected that neural network as well as human experts and could be useful as clinical decision support tool for liver cirrhosis patients.

  • PDF

Printed Name on ID Card recognition using a Hierachical Organized Neural Network (계층적 신경망을 이용한 주민등록증 성명인식)

  • 서원택;조범준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.325-327
    • /
    • 2003
  • 본 논문에서는 인쇄체 한글을 실용적으로 인식할 수 있는 계층적으로 구성한 신경망을 제안하고, 이를 이용해서 주민등록증의 성명을 인식하는데 적용하였다. 문자영상을 신경망을 이용하여 한글의 6가지 유형으로 먼저 분류한 후, 분류된 문자영상을 각 형식에 따라 자소단위로 분할해서 각 형식에 따른 신경망으로 인식하는 구조로 만들었다. 훈련용 데이터는 각 형식 별로 자소를 분리해서 얻은 영상들을 자소별 평균이미지로 만들어서 이를 조합하여 만든 글자로 사용하였다. 그래서 같은 형식의 같은 자음이라도 글자의 모양과 위치가 조금 다른것에 대해서 강인한 훈련을 할 수 있었다. 또한 입력단에서의 잡음을 줄이기 위해 히스토그램의 국부 평균을 적용하였다. 100명의 주민등록증을 컴퓨터 카메라를 이용하여 입력받아서 테스트한 결과 98.1%의 높은 인식률을 얻을 수 있었다.

  • PDF

Hierarchical Graph Reasoning for Multi-hop, Multi-task Question Answering (다중 홉 다중 작업 질문 응답을 위한 계층적 그래프 추론)

  • Lee, Sangui;Lee, Giho;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.984-987
    • /
    • 2020
  • 최근 오픈 도메인 자연어 질문 응답 분야에서는 폭넓은 다중 문서들을 토대로 다중 홉 추론과 동시에 서로 다른 수준의 여러 문제들을 한꺼번에 해결해야 하는 다중 작업 질문 응답에 관한 관심이 높다. 본 논문에서는 이러한 다중 홉 추론과 다중 작업을 요구하는 복잡 질문들에 효과적으로 응답하기 위해, 계층적 그래프 기반의 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 계층적 그래프와 그래프 신경망을 이용해 다중 문서들로부터 서로 다른 수준의 맥락 정보를 얻어낸 후, 이들을 활용하여 뒷받침 문장들, 답변 영역, 응답 유형 등을 동시에 구해야 하는 다중 작업 문제에 관한 답들을 예측해낸다. 본 논문에서는 오픈 도메인 자연어 질문 응답 데이터 집합인 HotpotQA를 이용한 실험들을 통해, 제안 모델의 긍정적 효과를 입증한다.

Layer-wise Model Inversion Attack (계층별 모델 역추론 공격)

  • Hyun-Ho Kwon;Han-Jun Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.69-72
    • /
    • 2024
  • 모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.

The Recognition of Printed Chinese Characters using Probabilistic VQ Networks and hierarchical Structure (확률적 VQ 네트워크와 계층적 구조를 이용한 인쇄체 한자 인식)

  • Lee, Jang-Hoon;Shon, Young-Woo;Namkung, Jae-Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1881-1892
    • /
    • 1997
  • This paper proposes the method for recognition of printed chinese characters by probabilistic VQ networks and multi-stage recognizer has hierarchical structure. We use modular neural networks, because it is difficult to construct a large-scale neural network. Problems in this procedure are replaced by probabilistic neural network model. And, Confused Characters which have significant ratio of miss-classification are reclassified using the entropy theory. The experimental object consists of 4,619 chinese characters within the KSC5601 code except the same shape but different code. We have 99.33% recognition rate to the training data, and 92.83% to the test data. And, the recognition speed of system is 4-5 characters per second. Then, these results demonstrate the usefulness of our work.

  • PDF

Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition (계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식)

  • 성재모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • For the handwritten digit recognition, this paper Proposes a hierarchical Gator features extraction method and a Bayesian network for them. Proposed Gator features are able to represent hierarchically different level information and Bayesian network is constructed to represent hierarchically structured dependencies among these Gator features. In order to extract such features, we define Gabor filters level by level and choose optimal Gabor filters by using Fisher's Linear Discriminant measure. Hierarchical Gator features are extracted by optimal Gabor filters and represent more localized information in the lower level. Proposed methods were successfully applied to handwritten digit recognition with well-known naive Bayesian classifier, k-nearest neighbor classifier. and backpropagation neural network and showed good performance.

End-to-End Learning-based Spatial Scalable Image Compression with Multi-scale Feature Fusion Module (다중 스케일 특징 융합 모듈을 통한 종단 간 학습기반 공간적 스케일러블 영상 압축)

  • Shin Juyeon;Kang Jewon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.1-3
    • /
    • 2022
  • 최근 기존의 영상 압축 파이프라인 대신 신경망의 종단 간 학습을 통해 압축을 수행하는 알고리즘의 연구가 활발히 진행되고 있다. 본 논문은 종단 간 학습 기반 공간적 스케일러블 압축 기술을 제안한다. 보다 구체적으로 본 논문은 신경망의 각 계층에서 하위 계층의 학습된 특징 (feature)을 융합하여 상위 계층으로 전달하는 다중 스케일 특징 융합 (multi-scale feature fusion) 모듈을 도입해 상위 계층이 더욱 풍부한 특징 정보를 학습하고 계층 사이의 특징 중복성을 더욱 잘 제거할 수 있도록 한다. 기존 방법 대비 향상 계층(enhancement layer)에서 1.37%의 BD-rate가 향상된 결과를 볼 수 있다.

  • PDF

A Study on Compression of Connections in Deep Artificial Neural Networks (인공신경망의 연결압축에 대한 연구)

  • Ahn, Heejune
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.17-24
    • /
    • 2017
  • Recently Deep-learning, Technologies using Large or Deep Artificial Neural Networks, have Shown Remarkable Performance, and the Increasing Size of the Network Contributes to its Performance Improvement. However, the Increase in the Size of the Neural Network Leads to an Increase in the Calculation Amount, which Causes Problems Such as Circuit Complexity, Price, Heat Generation, and Real-time Restriction. In This Paper, We Propose and Test a Method to Reduce the Number of Network Connections by Effectively Pruning the Redundancy in the Connection and Showing the Difference between the Performance and the Desired Range of the Original Neural Network. In Particular, we Proposed a Simple Method to Improve the Performance by Re-learning and to Guarantee the Desired Performance by Allocating the Error Rate per Layer in Order to Consider the Difference of each Layer. Experiments have been Performed on a Typical Neural Network Structure such as FCN (full connection network) and CNN (convolution neural network) Structure and Confirmed that the Performance Similar to that of the Original Neural Network can be Obtained by Only about 1/10 Connection.