• Title/Summary/Keyword: 계층적 분류 모델

Search Result 166, Processing Time 0.039 seconds

Layer-wise Model Inversion Attack (계층별 모델 역추론 공격)

  • Hyun-Ho Kwon;Han-Jun Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.69-72
    • /
    • 2024
  • 모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.

A Hybrid Hierarchical Architecture for Real-time Agents (실시간 에이전트들을 위한 혼합형 계층 구조)

  • 김하빈;권기덕;김인철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.452-454
    • /
    • 2003
  • 기존의 실시간 에이전트 환경에서는 에이전트 구조에서 고려하지 않았던 높은 복잡성의 문제를 해결하기에 환경에 대한 고려가 부족하여 구현 시 충분한 지침으로 상기에는 부족하거나 적합하지 않았다. 본 논문에서는 이러한 고려하여야 할 환경에서 필요한 요소들을 기존의 계층기반 에이전트 구조를 보완한 혼합형 구조를 이용하여 행위 기 반 구조를 설계하고 구현하였다. 분산적이며 실시간으로 동작하는 환경에서는 효율적이고 범용적으로 사용 할 수 있는 행위 기반 구조가 요구된다. 본 논문에서 제시하는 에이전트 구조는 행위의 논리적 상하계층에 중점을 둔 계층별 분류를 사용하지 않고. 범주 분류한 RtABCM을 사용하여 복잡한 실시간 환경에 유연하게 적응할 수 있는 구조를 제안하였다. 이를 통하여 계층의 단계와 병렬적으로 진행이 가능한 동일한 계층 행위의 수에 제약을 두지 않게 되어 정적인 계층 구조에서 오는 제약의 한계를 극복하고 있다. 또한 행위의 객체화와 이를 위한 구성 요소의 지원으로 실시간 환경에 대한 다중의 행위나 계획 진행에 대한 유연한 진행. 양방향성을 지원하는 확장된 행위모델. 설계와 구현에 있어 자유롭고 유연한 모델을 제시하고 있다. 본 논문에서는 RtABCM에 적응한 행위기반 구조를 실시간 에이전트 환경인 GameBots에 적용시켜 구조의 실시간 환경에 대한 적응성을 증명하고 있다.

  • PDF

Extended Electronic Catalog for dynamic and flexible Electronic Commerce (전자상거래를 위한 확장된 디지털 카탈로그 및 질의 모델 제안)

  • 정지혜;이상구;우치수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.120-122
    • /
    • 1999
  • World Wide Web은 하이퍼미디어라는 뛰어난 사용자 인터페이스 기능을 제공함으로써 인터넷을 대중화 시켰고, 전자상거래라는 인터넷의 상업화도 가능하게 되었다. 이와 같은 전자상거래에서 필수적인 기술 중의 하나는 사용자가 원하는 상품의 카탈로그를 쉽고 빠르게 찾는 것이다. 본 논문의 목적은 전자 카탈로그를 정의하고 질의하는 모델을 제안하여 전자 카탈로그 시스템을 보다 쉽게 구축하고 유지하며 사용자의 요구사항을 만족하는 상품에 대한 카탈로그를 보다 쉽게 검색할 수 있는 방법을 제공하는 것이다. 본 모델의 주된 아이디어는 상품에 대한 정보를 표현하는 기존의 카탈로그와 계층적 검색을 위해 존재하는 분류체계를 통합하여 하나의 객체로 정의하고 그 객체에 대한 질의 언어를 정의함으로써 기존의 카탈로그에 대한 개념을 확장하여 전자 카탈로그 시스템 전반에 관한 검색을 용이하도록 하는 것이다. 확장된 카탈로그는 하나의 객체로 정의되기 때문에 질의에 의해 전체를 필터링해서 일부분만을 보여주거나, 사용자가 원하는 형태로 재구성하는 것이 가능하게 된다. 이를 위해 본 모델에서는 상품에 대한 정보를 그래프 형태로 정의하고 그들을 계층적으로 분류하는 분류 체계에 대해서 설명한다. 그리고 확장된 카탈로그를 각 상품과 카테고리를 노드로 한 그래프 형태로 정의하고 그에 대한 질의어를 제안한다.

  • PDF

Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition (계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식)

  • 성재모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • For the handwritten digit recognition, this paper Proposes a hierarchical Gator features extraction method and a Bayesian network for them. Proposed Gator features are able to represent hierarchically different level information and Bayesian network is constructed to represent hierarchically structured dependencies among these Gator features. In order to extract such features, we define Gabor filters level by level and choose optimal Gabor filters by using Fisher's Linear Discriminant measure. Hierarchical Gator features are extracted by optimal Gabor filters and represent more localized information in the lower level. Proposed methods were successfully applied to handwritten digit recognition with well-known naive Bayesian classifier, k-nearest neighbor classifier. and backpropagation neural network and showed good performance.

DAKS: A Korean Sentence Classification Framework with Efficient Parameter Learning based on Domain Adaptation (DAKS: 도메인 적응 기반 효율적인 매개변수 학습이 가능한 한국어 문장 분류 프레임워크)

  • Jaemin Kim;Dong-Kyu Chae
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.678-680
    • /
    • 2023
  • 본 논문은 정확하면서도 효율적인 한국어 문장 분류 기법에 대해서 논의한다. 최근 자연어처리 분야에서 사전 학습된 언어 모델(Pre-trained Language Models, PLM)은 미세조정(fine-tuning)을 통해 문장 분류 하위 작업(downstream task)에서 성공적인 결과를 보여주고 있다. 하지만, 이러한 미세조정은 하위 작업이 바뀔 때마다 사전 학습된 언어 모델의 전체 매개변수(model parameters)를 학습해야 한다는 단점을 갖고 있다. 본 논문에서는 이러한 문제를 해결할 수 있도록 도메인 적응기(domain adapter)를 활용한 한국어 문장 분류 프레임워크인 DAKS(Domain Adaptation-based Korean Sentence classification framework)를 제안한다. 해당 프레임워크는 학습되는 매개변수의 규모를 크게 줄임으로써 효율적인 성능을 보였다. 또한 문장 분류를 위한 특징(feature)으로써 한국어 사전학습 모델(KLUE-RoBERTa)의 다양한 은닉 계층 별 은닉 상태(hidden states)를 활용하였을 때 결과를 비교 분석하고 가장 적합한 은닉 계층을 제시한다.

Medical Image Classification based on Hierarchical CNN Model (계층적 형태의 Convolutional Neural Network를 이용한 의료영상 분류 알고리즘)

  • Lee, Sang-Hyuk;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.248-249
    • /
    • 2018
  • 본 논문에서는 고해상도 자궁 내막 세포들을 대상으로 정상세포와 이상세포들을 구별하기 위한 알고리즘을 제안한다. 구체적으로 계층적 구조를 갖는 Convolutional Neural Network (CNN) 모델을 기반으로 네 가지 세포들을 구분하는 알고리즘을 제안한다. 이 연구에서 고해상도 영상을 분류하면서도 복잡도 증가를 막기 위해 효율적인 전처리 과정을 사용하였다. 다양한 컴퓨터 실험을 통하여 제안하는 기술을 사용할 때, 인식률이 향상되는 것을 확인할 수 있었다.

  • PDF

Gesture Motion Estimate Using Clustering Method on Gesture Space (제스처 공간에서 클러스터링 방법을 이용한 제스처 동작 평가)

  • 이용재;이칠우
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.173-176
    • /
    • 2001
  • 본 논문에서는 저차원 제스처 특징 공간에서 연속적인 인간의 제스처 영상을 계층적 클러스터링을 이용하여 인식할 수 있는 방법에 대해 소개한다. 일반적으로 제스처 공간에서 모델 패턴들과 매칭하기 위해서는 모든 모델 영상과 연속적인 입력영상들간의 거리평가로 인식을 수행하게 된다. 여기서 제안한 방법은 모델영상들을 연속성을 가진 클러스터로 분류하여 입력 영상과 계층적으로 비교할 수 있으며 동작에 관한 구체적 정보를 얻을 수 있다. 이 방법은 매칭 속도와 인식률을 개선하고 인식결과를 학습에 이용할 수 있는 장점이 있다.

  • PDF

The Computational Extraction of Semantic Hierarchies for Korean Adjectives (한국어 형용사 의미계층의 전산적 추출)

  • Song, Sang-Houn;Choe, Jae-Woong
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.109-116
    • /
    • 2006
  • 자연 언어의 각 어휘는 서로 관계를 가지고 계층적 입체적 모델로 존재한다. 이러한 전제에서 출발한 연구 가운데 대표적인 것이 의미 계층이다. 본고에서는 한국어 형용사의 의미 계층을 추출하는 것을 목표로 하여, 형식적 객관적 방법론을 정립하고, 결과를 비교적 신속하고 정확하게 이끌어 낼 수 있는 전산적 처리 도입하였다. 우선 전체 구축에 필요한 절차를 세우고 각 단계에서 필요한 방법과 휴리스틱을 정리하였다. 이를 바탕으로 사전 뜻풀이말을 이용하여 반자동으로 작업하였으며, 일부 코퍼스를 활용하였다 최종 알고리즘으로는 Top-Down 방식을 택하였다. 이렇게 추출된 한국어 형용사 의미 계층은 226개의 최상위어에서 시작하여 총 3,792개의 표제어를 망라한다. 또한 수직적 계열 관계만을 명시했을 경우 나타날 수 있는 한계를 보완하기 위해, 동의어 반의어와 같은 수평적 의미 관계와 공기 명사와 같은 결합 관계 등을 함께 기술하였다. 한편 표제항을 뜻풀이말의 공기 명사를 이용하여 의미별로 분류하고 각 분류마다 별도의 의미 계층을 수립하였다.

  • PDF

BERT & Hierarchical Graph Convolution Neural Network based Emotion Analysis Model (BERT 및 계층 그래프 컨볼루션 신경망 기반 감성분석 모델)

  • Zhang, Junjun;Shin, Jongho;An, Suvin;Park, Taeyoung;Noh, Giseop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.34-36
    • /
    • 2022
  • In the existing text sentiment analysis models, the entire text is usually directly modeled as a whole, and the hierarchical relationship between text contents is less considered. However, in the practice of sentiment analysis, many texts are mixed with multiple emotions. If the semantic modeling of the whole is directly performed, it may increase the difficulty of the sentiment analysis model to judge the sentiment, making the model difficult to apply to the classification of mixed-sentiment sentences. Therefore, this paper proposes a sentiment analysis model BHGCN that considers the text hierarchy. In this model, the output of hidden states of each layer of BERT is used as a node, and a directed connection is made between the upper and lower layers to construct a graph network with a semantic hierarchy. The model not only pays attention to layer-by-layer semantics, but also pays attention to hierarchical relationships. Suitable for handling mixed sentiment classification tasks. The comparative experimental results show that the BHGCN model exhibits obvious competitive advantages.

  • PDF

A Hierarchical Graph Structure and Operations for Real-time A* Path finding and Dynamic Graph Problem (실시간 A* 길 찾기와 동적 그래프 문제를 위한 계층적 그래프 구조와 연산자)

  • Kim, Tae-Won;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Game Society
    • /
    • v.4 no.3
    • /
    • pp.55-64
    • /
    • 2004
  • A dynamic graph is suitable for representing and managing dynamic changable obstacles or terrain information in 2D/3D games such as RPG and Strategy Simulation Games. We propose a dynamic hierarchical graph model with fixed level to perform a quick A* path finding. We divide a graph into subgraphs by using space classification and space model, and construct a hierarchical graph. And then we perform a quick path fading on the graph by using our dynamic graph operators. With our experiments we show that this graph model has efficient properties for finding path in a dynamic game environment.

  • PDF