• 제목/요약/키워드: 계층적 군집방법

검색결과 117건 처리시간 0.029초

인자 점수를 이용한 이상치 데이터의 군집화 (Outlier Data Clustering using Factor Score)

  • 전성해;임민택;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.77-80
    • /
    • 2002
  • 이상치를 포함한 학습 데이터의 군집화 전략은 일반적으로 이상치를 포함하여 학습하거나, 이상치를 제거하는 두 가지 선택이 가능하다. 이상치를 제거하지 않고 학습에 반영시켜야 할 경우 한 개 또는 소수의 이상치가 독자적인 군집을 형성하거나 객관적인 군집화를 방해하는 문제가 발생할 수 있다. 이 때 주어진 학습 데이터의 군집 결과가 이상치의 영향으로부터 벗어나기 위해 원래의 학습 데이터에 대한 변환 작업을 거친 후 군집화를 수행할 수 있다. 이러한 변환 방법으로서 본 논문에서는 차원 축소의 기법으로 알려진 인자 분석의 점수를 사용하였다. 인자 점수로 변환된 학습 데이터에 대해 계층적 군집화, K-means 그리고 자기조직화 지도 등과 같은 군집화 알고리즘을 적용하면 이상치가 자신만의 군집을 별도로 형성하지 않고 다른 학습 데이터의 군집에 소속되면서 이상회의 영향으로부터 벗어남을 실험을 통하여 확인하였다.

  • PDF

Motif 기반의 단백질 군집화 (Motif-Based Protein Clustering)

  • 진훈;김현식;김인철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.235-237
    • /
    • 2002
  • motif란 기능적으로 유사한 단백질 군의 아마노산 서열들에 공통적으로 나타나는 일정한 패턴이나 부분서열을 말한다. 본 논문에서는 motif들로 각 단백질의 특성을 표현한 다음, 이것을 기초로 유사성을 비교하여 단백질들을 기능적으로 유사한 여러개의 계층적 군으로 나누는 군집화 방법을 소개하였다. 영역 특성상 확장성과 계층성을 가지는 신경망 GHSOM을 군집화 알고리즘으로 사용하였고, 실제 307 개의 단백질들에 대한 군집화 실험을 통해 그 효과를 확인해보았다.

  • PDF

데이터 마이닝에서의 군집분석 알고리즘 비교 연구

  • 이영섭;안미영
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.19-25
    • /
    • 2003
  • 데이터베이스에 내재된 패턴이나 관계를 묘사한 것만으로도 의사결정에 필요한 정보를 제공할 수 있는데 이 데이터들의 변수들을 비슷한 특징을 가지는 소그룹으로 나누어 패턴을 찾는 것을 군집분석이라 한다. 이러한 군집 분석에는 분리군집방법과 계층적군집방법이 있는데, 재할당이 가능한 분리군집방법의 여러 알고리즘에 대해 비교해보자. 분리군집알고리즘에는 중심을 평균으로 하는 k-평균 알고리즘과, 중심을 메도이드로하는 PAM, CLARA, CLARANS 알고리즘이 있다. 이러한 알고리즘에 대한 이론과, 장단점을 설명하고, 분산과 중심들간의 평균 거리로 비교해 본다.

  • PDF

움직임 벡터의 계층적 군집화를 통한 HEVC 고속 부호화 연구 (Study on Fast HEVC Encoding with Hierarchical Motion Vector Clustering)

  • 임정윤;안용조;심동규
    • 방송공학회논문지
    • /
    • 제21권4호
    • /
    • pp.578-591
    • /
    • 2016
  • 본 논문에서는 HEVC 부호화기의 속도를 향상시키기 위하여, 움직임 벡터의 군집화를 통한 코딩 블록의 최대 분할 깊이를 결정하는 방법을 제안한다. 현재 HEVC (High Efficiency Video Coding)의 참조 소프트웨어 HM은 최적의 코딩 블록 구조를 찾기 위해 다양한 코딩 블록의 깊이들에 대한 율-왜곡 최적화 (RDO: Rate-Distortion Optimization)를 수행한다. 하지만 이는 부호화기의 높은 복잡도를 차지하는 요소 중 하나로 보고된다. 본 논문에서는 최적의 코딩 블록 구조를 움직임 벡터의 군집화 된 결과에 따라 결정함으로써, 부호화 과정에서 코딩 블록 구조를 찾기 위한 RDO의 복잡도를 줄임으로써 부호화기의 속도를 향상시키는 방법을 제안한다. 제안하는 방법은 전처리 과정으로부터 원본 영상에 대한 움직임 벡터 계산, 이를 통한 계층적 군집화를 수행하여, 군집화된 경향을 기반으로 코딩 블록의 최대 깊이를 결정한다. 본 논문의 제안하는 방법은 HEVC 참조 소프트웨어 대비 평균 1.45% BD-rate 손실이 있었으며 평균 16%의 부호화 속도 향상을 보였다. 또한, 기존의 고속화 방법과 함께 적용한 경우 1.84% BD-rate 손실과 45.13%의 평균 부호화 속도 향상을 나타냈다.

대용량 데이터 처리를 위한 하이브리드형 클러스터링 기법 (A Hybrid Clustering Technique for Processing Large Data)

  • 김만선;이상용
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.33-40
    • /
    • 2003
  • 데이터 마이닝은 지식발견 과정에서 중요한 역할을 수행하며, 여러 데이터 마이닝의 알고리즘들은 특정의 목적을 위하여 선택될 수 있다. 대부분의 전통적인 계층적 클러스터링 방법은 적은 양의 데이터 집합을 처리하는데 적합하여 제한된 리소스와 부족한 효율성으로 인하여 대용량의 데이터 집합을 다루기가 곤란하다. 본 연구에서는 대용량의 데이터에 적용되어 알려지지 않은 패턴을 발견할 수 있는 하이브리드형 신경망 클러스터링 기법의 PPC(Pre-Post Clustrering) 기법을 제안한다. PPC 기법은 인공지능적 방법인 자기조직화지도(SOM)와 통계적 방법인 계층적 클러스터링을 결합하여 두 과정에서는 군집의 내부적 특징을 나타내는 응집거리와 군집간의 외부적 거리를 나타내는 인접거리에 따라 유사도를 측정한다. 최종적으로 PPC 기법은 측정된 유사도를 이용하여 대용량 데이터 집합을 군집화한다. PPC 기법은 UCI Repository 데이터를 이용하여 실험해 본 결과, 다른 클러스터링 기법들 보다 우수한 응집도를 보였다.

블로그 검색에서의 태그 계층구조를 이용한 포스트 군집화 (Post Clustering Method using Tag Hierarchy for Blog Search)

  • 이기준;김경민;이명진;김우주;홍준석
    • 한국전자거래학회지
    • /
    • 제16권4호
    • /
    • pp.301-319
    • /
    • 2011
  • 웹 3.0으로 진화중인 웹 환경 하에서 블로그는 사용자 주도적인 웹의 특성을 가장 잘 표현하는 집합체 중 하나로, 기존의 웹 정보자원과 구분되는 새로운 형태의 지식베이스로써의 역할을 담당하고 있다. 기존의 웹 정보자원들이 사이트 단위로 광범위한 주제를 다루었던 것에 반해, 블로그의 정보자원은 사용자의 관심사에 따라 특정 정보들이 블로그 단위로 밀집되어 있으며 또한 사용자 태깅에 의해 게시된 정보자원에 대한 분류기준을 가지고 있다. 본 연구에서는 이러한 블로그의 특징들을 이용하여 보다 좀 더 효과적인 정보검색에 활용하기 위하여 블로그의 제목 키워드나 태그를 활용하여 태그 계층구조를 만들고 그 계층구조를 적용한 포스트군집화 방법론을 개발하여 기존의 블로그 검색과는 다른 특성을 가진 검색결과를 제시하였다. 이를 위하여 블로그 태그간의 관계성이 반영된 태그 계층구조를 생성하고 태그 유사도에 따른 태그군집화 방법을 개발하였다. 본 논문은 제안된 방법론을 구현한 프로토타입 시스템을 통해 실제사례에서의 연구의 적용 가능성을 판단하였으며, 군집 유사도 평가기준인 CSIM(Cluster SIMilarity)을 사용하여 골든 스탠다드의 유사도 비교를 통해 개발된 방법론과 시스템의 성과를 평가하였다.

에너지 효율성을 높인 무선 센서 네트워크의 부하 균형 군집모델 (Energy Effective Load Balanced Clustering Model for Wireless Sensor Networks)

  • 이재희;김병기;강승호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.379-382
    • /
    • 2015
  • 무선 센서 네트워크는 제한된 에너지 자원으로 동작하므로 에너지 소비를 최소화하여 통신하는 기법이 무선 센서 네트워크 설계에 있어 매우 중요한 요소이다. 센서 노드들의 에너지 효율을 개선하기 위한 다양한 방법 중 클러스터링 알고리즘에 기반 한 계층적 라우팅 방법이 무선 센서 네트워크의 성능과 수명을 증가시키기 위해 효과적인 기술임이 알려지면서 다양한 접근법이 제시되고 있다. 클러스터 기반 아키텍처에서 클러스터의 부하 균형을 위한 효율적인 군집 모델은 게이트웨이와 센서 노드의 수명을 증가시켜 전체 네트워크의 성능을 향상 시킨다. 본 논문에서는 네트워크의 수명과 에너지 효율성을 높이기 위해 새로운 부하 균형 군집 모델을 제시한다. 또한 최적해를 보장하는 분기 한정 알고리즘을 설계하고 이를 이용해 다양한 조건에서 기존에 제시된 부하 균형 군집 모델과 실험하고 성능을 비교한다.

계층적 군집분석 기반의 Continuous Risk Profile을 이용한 고속도로 사고취약구간 선정 (Identifying Hotspots on Freeways Using the Continuous Risk Profile With Hierarchical Clustering Analysis)

  • 이서영;김철순;김동규;이청원
    • 대한교통학회지
    • /
    • 제31권4호
    • /
    • pp.85-94
    • /
    • 2013
  • Continuous Risk Profile(CRP)은 고속도로의 사고취약구간을 선정하는 방법론 중에서 정확성과 효율성이 뛰어난 것으로 알려져 있다. 그러나 전통적인 CRP는 데이터베이스 구축을 위한 대규모 투자를 필요로 하는 안전성능함수를 이용한다. 본 연구는 안전성능함수 대신 동질 그룹들의 평균사고건수를 규모조정계수로 이용하는 CRP를 제안하는 것을 목적으로 한다. 고속도로 구간들을 동질 그룹으로 분류하기 위하여 각 구간의 AADT와 차로 수 자료를 기반으로 하는 계층적 군집분석이 수행된다. 제안된 모형은 캘리포니아의 I-880 자료를 이용하여 다른 여러 가지 사고취약구간 선정방법들과 비교된다. 분석 결과에 따르면, 제안된 모형은 false negative를 발생시키지 않으며 false positive rate를 감소시킨다. 본 연구에서 개발된 방법론은 추가적인 복잡한 데이터베이스 없이 고속도로 사고취약구간을 선정하는 데에 활용될 수 있으며, 또한 고속도로 안전관리시스템을 개선하는 데에 기여할 수 있다.

대표 경로에 기반한 XML 문서의 계층 군집화 기법 (A Hierarchical Clustering Technique of XML Documents based on Representative Path)

  • 김우생
    • 인터넷정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.141-150
    • /
    • 2009
  • XML은 데이터 교환과 정보 관리에 점차 중요해지고 있다. 근래에 XML 문서들에 대한 접근, 질의, 저장을 위한 효율적인 기법들을 개발하기 위해 많은 노력들이 이루어지고 있다. 이 논문에서 우리는 XML 문서들을 효율적으로 군집화하는 새로운 방법을 제안한다. XML 문서의 특징을 위해 XML 문서의 구조와 내용을 대표할 수 있는 새로운 대표 경로, 즉 가상 경로가 제안된다. XML 문서들을 군집화하기 위해 잘 알려진 계층 군집화 기법들을 대표 경로들에 적용하기 위한 방법도 제안된다. 실험을 통해 XML 문서의 특징으로 가상 경로를 사용했을 때 실제적인 군집들이 촘촘한 형상으로 잘 형성됨을 알 수 있다.

  • PDF

일반국도 도로특성분류를 위한 통계적 군집분석과 Kohonen Self-Organizing Maps의 비교연구 (A Comparative Study on Statistical Clustering Methods and Kohonen Self-Organizing Maps for Highway Characteristic Classification of National Highway)

  • 조준한;김성호
    • 대한토목학회논문집
    • /
    • 제29권3D호
    • /
    • pp.347-356
    • /
    • 2009
  • 본 연구는 기존의 도로기능분류 정의와 방법론을 벗어나 교통특성에 따른 도로분류 방법론인 도로특성분류를 기초로 분석을 수행하였다. 도로특성분류에 대한 일련의 과정 중에서 다양한 교통특성을 반영하는 설명변수를 기초로 요인점수를 산출하고, 동질한 도로구간을 그룹핑하는 군집화 분석과정과 적정 군집수 도출에 따른 군집결과비교에 본 연구는 초점을 맞추었다. 도로분류를 위해 병합적 계층 군집분석인 Ward법, 비계층적 군집분석인 K-means법, 자율신경 회로망을 이용한 K-SOM을 사용하여 비교분석하였다. 각 군집기법에 대한 결과를 토대로 비교분석한 결과, 군집 수 5 이하에서는 K-means법, 군집 수 14 이상에서는 Kohonen selforganizing maps가 가장 우수한 것으로 나타났으며, 군집수 5~9사이에서는 Ward법과 Kmeans법의 군집 성능이 불규칙한 패턴을 보임에 따라 세밀한 결과분석을 통해 우수성을 결정하는 것이 바람직할 것으로 분석되었다. 본 연구결과는 다양한 교통특성을 고려한 도로구간의 군집 속성을 분석하고 예측하는 분류화 작업에 중요한 기초적인 자료로 사용될 것으로 기대된다.