• 제목/요약/키워드: 계측점의 차이

Search Result 129, Processing Time 0.02 seconds

Comparison of landmark positions between Cone-Beam Computed Tomogram (CBCT) and Adjusted 2D lateral cephalogram (Cone-Beam Computed Tomogram (CBCT)과 Adjusted 2D lateral cephalogram의 계측점 차이에 관한 비교 연구)

  • Son, Soo-Jung;Chun, Youn-Sic;Kim, Minji
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.222-232
    • /
    • 2014
  • Purpose: This study aims to investigate if 2D analysis method is applicable to analysis of CBCT by comparing measuring points of CBCT with those of Adjusted 2D Lateral Cephalogram (Adj-Ceph) with magnification adjusted to 100% and finding out at which landmarks the difference in position appear. Materials and methods: CBCT data and Adj-Ceph (100% magnification) data from 50 adult patients have been extracted as research objects, and the horizontal (Y axis) and vertical (Z axis) coordinates of landmarks were compared. Landmarks have been categorized into 4 groups by the position and whether they are bilaterally overlapped. Paired t-test was used to compare differences between Adj-Ceph and CBCT. Results: Significant difference was found at 11 landmarks including Group B (S, Ar, Ba, PNS), Group C (Po, Or, Hinge axis, Go) and Group D (U1RP, U6CP, L6CP) in the horizontal (Y) axis while all the landmarks in vertical (Z) axis showed significant difference (P<.05). As a result of landmark difference analysis, a meaningful difference with more than 1 mm at 13 landmarks were indentifed in the horizontal axis. In the vertical axis, significant difference over 1 mm was detected from every landmark except Sella. Conclusion: Using the conventional lateral cephalometric measurements on CBCT is insufficient. A new 3D analysis or a modified 2D analysis adjusted on 19 landmarks of the vertical axis and 13 of the horizontal axis are needed when implementing CBCT diagnosis.

Comparative Analysis of Accuracy between Computerized Tomography and Cephalogram for 3-Dimensional Measurement of Maxillofacial Structure (악안면 3차원 계측시 컴퓨터 단층촬영과 두부 방사선 규격사진의 정확성 비교 분석)

  • Paek, Jong-Su;Song, Jae-Chul;Lee, Hee-Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.123-137
    • /
    • 2001
  • Background: The purpose of this study is to evaluate the accuracy of measurements obtained from 3-dimensional computerized tomography and 3-dimensional cephalogram constructed by using the frontal and lateral cephalogram of six human dry skulls. Materials and Methods: After CT scans and each cephalograms were taken, 3-dimensional coordinates (X, Y, Z) of landmarks were obtained using computer programs. In this study, the accuracy of both methods were determined by means of 14 linear measurements compare with caliper measurements. Results: The standard deviation of landmarks of 3-dimensional CT and 3-dimensional cephalogram were 0.23 mm, and 0.30 mm in X axis, 0.27 mm and 0.25 mm in Y axis, and 0.27 mm and 0.31 mm in Z axis. In both methods, the standard deviation were less than 0.5 mm in all landmarks, and the most of landmarks showed less than 1 mm in range. Concerning the accuracy, the mean difference between 3-dimensional CT and manual measurements was 0.33 mm, and 1.13 mm between 3-dimensional cephalogram and manual measurements. The distance between RGo and LGo showed the largest difference (2.03 mm). There were highly significant, and large correlation with manual measurements in both methods (p<0.01). Conclusion: It is concluded that closeness of repeated measures to each skulls reveal the precision of both methods. Computerized tomography and cephalogram for 3-dimensional measurement of maxillofacial structure are equivalent in quality to caliper measurements.

  • PDF

Comparison of landmark position between conventional cephalometric radiography and CT scans projected to midsagittal plane (3차원 CT자료에서 선정된 계측점을 정중시상면으로 투사한 영상과 두부계측방사선사진상의 계측정의 위치 비교)

  • Park, Jae-Woo;Kim, Nam-Kug;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.427-436
    • /
    • 2008
  • Objective: The purpose of this study is to compare landmark position between cephalometric radiography and midsagittal plane projected images from 3 dimensional (3D) CT. Methods: Cephalometric radiographs and CT scans were taken from 20 patients for treatment of mandibular prognathism. After selection of land-marks, CT images were projected to the midsagittal plane and magnified to 110% according to the magnifying power of radiographs. These 2 images were superimposed with frontal and occipital bone. Common coordinate system was established on the base of FH plane. The coordinate value of each landmark was compared by paired t test and mean and standard deviation of difference was calculated. Results: The difference was from $-0.14{\pm}0.65$ to $-2.12{\pm}2.89\;mm$ in X axis, from $0.34{\pm}0.78$ to $-2.36{\pm}2.55\;mm$ ($6.79{\pm}3.04\;mm$) in Y axis. There was no significant difference only 9 in X axis, and 7 in Y axis out of 20 landmarks. This might be caused by error from the difference of head positioning, by masking the subtle end structures, identification error from the superimposition and error from the different definition.

Reproducibility of Lateral Cephalometric Landmarks According to Radiographic Image Enhancement (방사선상 enhancement 정도에 따른 측모두부방사선규격사진 계측점 설정의 재현도)

  • Ryu, Hwang-Sog;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.32 no.1 s.90
    • /
    • pp.59-69
    • /
    • 2002
  • The purpose of this study was to evaluate the reproducibility of lateral cephalometric landmarks according to radiographic image enhancement, and to contribute to the identification of cephalometric landmarks. Lateral cephalograms of ten individuals were taken and stored into computer. The images were then enhanced up to four grades by Quick Ceph Image Pro$^{TM}$ on condition that the gray-scale equalization number was 50 and the detail enhancement number was 50. After thirty two landmarks were identified on monitor images by five observers, the deviations from the mean, the distances estimated between identified points and the mean point of five identified points, were evaluated for each landmark at each enhancement grade. Through the statistical analysis, following results were obtained. 1. In case of unenhanced radiographic images, the inter-observer reproducibility of the landmarks showed a large variation. 2. The comparison of deviation from the mean according to the degree of radiographic image enhancement for each landmark showed that the inter-observer reproducibility was significantly different at 5 landmarks. 3. The landmark of pterygomaxillary fissure showed higher reproducibility at enhancement grade 1 and 2 images than at unenhanced images. So did the landmark of posterior nasal spine at enhancement grade 1 images, and the landmark of menton at enhancement grade 2, 3 and 4 images respectively. The above results suggest that the reproducibility of some landmarks can be increased by radiographic image enhancement during the identification of the lateral cephalometric landmarks on the monitor.

Accuracy of Automatic Cephalometric Analysis Programs on Lateral Cephalograms of Preadolescent Children (소아 환자 대상의 자동 계측점 식별 프로그램의 정확성 평가)

  • Song, Min Sun;Kim, Seong-Oh;Kim, Ik-Hwan;Kang, Chung-min;Song, Je Seon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.3
    • /
    • pp.245-254
    • /
    • 2021
  • The aim of this study was to evaluate the accuracy of 3 different automatic landmark identification programs on lateral cephalgrams and the clinical acceptability in pediatric dentistry. Sixty digital cephalometric radiographs of 7 to 12 years old healthy children were randomly selected. Fourteen landmarks were chosen for assessment and the mean of 3 measurements of each landmark by a single examiner was defined as the baseline landmarks. The mean difference between an automatically identified landmark and the baseline landmark was measured for each landmark on each image. The total mean difference of 3 automatic programs compared to the baseline landmarks were 2.53 ± 1.63 mm. Errors among 3 programs were not significantly different for 12 of 14 landmarks except Orbitale and Gonion. The automatic landmark identification programs showed significant higher mean detection errors than the manual method. The programs couldn't be used as the 1st tool to replace human examiners. But considering short consuming time, these results indicate that all 3 programs have sufficient validity to be used in pediatric dental clinic.

A STUDY ON THE ERRORS UN THE CEPHALOMETRIC MEASUREMENTS (두부방사선사진의 계측오류에 관한 연구)

  • Na, Kwang-Cheon;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.75-83
    • /
    • 1998
  • This study was done to recognize the importance of errors in measurements of cephalometric radiograph and to find the anatomical structures those need special care to select as a reference points through the detection of the systematic errors and estimation of random errors. For this purose, 100 cephalometric radiographs were prepared by usual manner and 61 reference points, and 130 measurement variables were established. Measurement errors were detected and estimated by the comparison of the 25 randomly-selected samples for repeated measurements with the main sample. The following results were obtained : 1. In comparison of the repeated measurements, there were statistical significant differences in 24 variables which were 18.4% of 130 total variables. 2. The frequency of the difference in identification of the reference points between the repeated measurements was very high in the root apex of upper incisor(as), the most posterior wall of maxilla(tu), soft tissue nasion(n'), soft tissue frontal eminence(ft), and ad3 in airway. 3. After correction of reference points marking until the level of below 5% significance, the range of random errors were from 0.67 to 1.71 degree or mm. 4. The variable shown the largest random error was the interincisal angle(ILs-ILi). 5. Measurement errors were mainly caused by the lack of precision in anatomic definitions and obscure radiographic image. From the above results, the author could find the high possibility of errors in cephalometric measurements and from this point, we should include error analysis in all the studies concerning measurments. In is essential to have a concept of error analysis not only for the investigator but also for a reader of other articles.

  • PDF

A Study on Behavior of the Earth Retaining Structure by Field Measurement and Numerical Analysis (현장계측과 수치해석에 의한 흙막이구조물의 거동 비교분석)

  • Wo, Jongtae
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.286-295
    • /
    • 2017
  • In this study, it is compared various coefficients of subgrade reaction for application of numerical analysis based on measured data by using various theories and empirical formula. The ratio of the maximum and minimum value is 6.80 at the top of wall but it is 1.06 at the maximum displacement point depends on change of calculated coefficient of subgrade reaction. The data of displacement were generally similar considering an increment of a coefficient of subgrade reaction. And the results of comparison of the displacement at the maximum displacement point by numerical analysis and measured data show similar displacement shape.

THREE DIMENSIONAL ANALYSIS OF MAXILLOFACIAL STRUCTURE BY FRONTAL AND LATERAL CEPHALOGRAM (두부 방사선 규격사진을 이용한 악안면 구조의 3차원적 분석법)

  • Kwon, Kui-Young;Lee, Sang-Han;Kwon, Tae-Geon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.174-188
    • /
    • 1999
  • The purpose of this study is to evaluate the precision and accuracy of a three dimensional cephalogram constructed by using the frontal and lateral cephalogram of twelve human dry skulls. After achieving the three dimensional image reconstruction program, we tried to apply this program to two dentofacial deformity patients. 1. Conventional nasion relator in cephalostat was used to reproduce the same head position for the same dry skull. The mean difference of the three dimensional cephalogram for the same dry skull was $0.34{\pm}0.33mm$. Closeness of repeated measures to each skull reveals the precision of this method for the three dimensional cephalogram. 2. Concerning the accuracy, the mean difference between the three dimensional reconstruction data and actual lineal measurements was $1.47{\pm}1.45mm$ and the mean magnification ratio was $100.24{\pm}4.68%$. This Diffrerence is attributed mainly to the ill defined cephalometric landmarks, not to the positional change of the dry skull. 3. Cephalometric measurement of lateral and frontal radiographs had no consecutive magnification ratio because of the different focus-object distance. The mean difference between the frontal and lateral cephalogram to the actual lineal measurements was $4.72{\pm}2.01mm$ and $-5.22{\pm}3.36mm$. Vertical measurements were slightly more accurate than horizontal measurements. 4. Applying to the actual patient analysis, it is recommendable to use this program for analyzing the asymmetry or spatial change after operation. The orthodontic bracket would be a favorable cephalometric landmark for constructing the three dimensional images.

  • PDF

Reproducibility of asymmetry measurements of the mandible in three-dimensional CT imaging (전산화단층사진을 이용한 하악골 3차원 영상에서 비대칭진단 계측항목의 재현도에 관한 연구)

  • Kim, Go-Woon;Kim, Jae-Hyung;Lee, Ki-Heon;Bwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.38 no.5
    • /
    • pp.314-327
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the reproducibility of measurements representing asymmetry of the mandible and to identify which landmarks would be more useful in 3-dimensional (3D) CT imaging. Methods: Facial CT images were obtained from forty normal occlusion individuals. Eighteen landmarks were established from the condyle, gonion, and menton areas, and 25 measurements were constructed to represent asymmetry of the mandible; 8 for ramus length, 12 for mandibular body length, 1 for condylar neck length, 2 for frontal ramal inclination, and 2 for lateral ramal inclination. Inter- and intra-examiner reproducibility of the measurements was evaluated. Results: Inter-examiner reproducibility of the measurements proved to be high except for 3 measurements. Intra-examiner reproducibility also proved to be high except for 2 measurements. Inter- and intra-examiner reproducibility of the measurements including Gonion proved to be low. Conclusions: The results of the present study indicate that the landmarks and measurements constructed in 3D CT images can be used for the diagnosis of facial asymmetry.

THE ROENTGENOCEPHALOMETRIC STANDRDS OF THE KOREANS ACCORDING TO THE HIGLEY'S ANALYSIS (Higley씨 분석법에 의한 한국인 Roentgenographic Cephalometry의 기준치에 관하여)

  • Yu, Yeong-Se
    • The Journal of the Korean dental association
    • /
    • v.8 no.11
    • /
    • pp.629-644
    • /
    • 1970
  • Higley씨 법에 의한 한국인의 Roentgenographic Cephalometry의 기준치를 조사하기 위하여 남자 150명,여자140명 합계 290명을 대상으로 하여 이를 분석계측하였다. 대상자의 대부분은 정상적인 교합자중에서 선택되었으며 악골과 안면이 잘 조화되고 있었다. 연구성적은 표의 형식으로 요약되었고 5,7,10,15,20,23세등의 연령군에 대하여 17항목의 선상계측과 20항목의 각도계측을 시행하였으며 당 계측치의 Mean, Standard deviation,Minimum,Maximum등을 산출하였다. 본 연구를 통하여 Cranial depth는 배인이 한국인에 비하여 큰 차이를 보이며(Line-NZ,FT)원부에 있어서는 한국인이 백인에 비하여 후퇴되었음을 알았다.(Angle-MNS),이것이 한국인과 백인의 안모의 판이점이라고 사료된다.

  • PDF