Reproducibility of asymmetry measurements of the mandible in three-dimensional CT imaging

전산화단층사진을 이용한 하악골 3차원 영상에서 비대칭진단 계측항목의 재현도에 관한 연구

  • Kim, Go-Woon (Department of Orthodontics, School of Dentistry, Chonnam National University) ;
  • Kim, Jae-Hyung (Department of Oral Medicine, School of Dentistry, Chonnam National University) ;
  • Lee, Ki-Heon (Department of Orthodontics, School of Dentistry, Chonnam National University) ;
  • Bwang, Hyeon-Shik (Department of Orthodontics, 2nd Stag of Brain Korea 21, School of Dentistry, Dental Science Research Institute, Chonnam National University)
  • 김고운 (전남대학교 치과대학 교정학교실) ;
  • 김재형 (전남대학교 치과대학 구강내과학교실) ;
  • 이기헌 (전남대학교 치과대학 교정학교실) ;
  • 황현식 (전남대학교 치의학연구소, 2단계 BK21 연구사업단, 치과대학 교정학교실)
  • Published : 2008.10.30

Abstract

Objective: The purpose of this study was to evaluate the reproducibility of measurements representing asymmetry of the mandible and to identify which landmarks would be more useful in 3-dimensional (3D) CT imaging. Methods: Facial CT images were obtained from forty normal occlusion individuals. Eighteen landmarks were established from the condyle, gonion, and menton areas, and 25 measurements were constructed to represent asymmetry of the mandible; 8 for ramus length, 12 for mandibular body length, 1 for condylar neck length, 2 for frontal ramal inclination, and 2 for lateral ramal inclination. Inter- and intra-examiner reproducibility of the measurements was evaluated. Results: Inter-examiner reproducibility of the measurements proved to be high except for 3 measurements. Intra-examiner reproducibility also proved to be high except for 2 measurements. Inter- and intra-examiner reproducibility of the measurements including Gonion proved to be low. Conclusions: The results of the present study indicate that the landmarks and measurements constructed in 3D CT images can be used for the diagnosis of facial asymmetry.

본 연구는 하악골 3차원 입체영상에서 비대칭계측항목들의 재현도 비교를 통하여 안면비대칭 진단 시 유용한 계측점 설정에 도움이 되고자 시행되었다. 40명의 두경부 전산화단층사진을 이용하여 생성한 3차원 영상에서 하악골 형태를 결정짓는 부위로 하악과두, 하악우각부, 하악정중부를 선택하고 각 부위의 세부위치에 따라, 그리고 측정 시 보는 각도에 따라 구분하여 하악과두의 경우 $Cd_{sup}_{-}_{sup}$ 등 6개, 하악우각부의 경우 $Go_{inf}_{-}_{lat}$ 등 10개, 하악정중부의 경우 $Me_{-}_{ant},\;Me_{-}_{inf}$ 등 총 18개의 계측점을 설정한 후 이를 이용하여 하악골 비대칭 시 좌우 차이를 보일 수 있는 25개의 계측항목을 설정 및 계측한 후 조사자간 및 조사자내의 재현도를 비교 평가하였다. 조사자간 재현도의 경우 25개의 계측항목 중 3개를 제외한 모든 계측항목에서, 조사자내 재현도의 경우 2개 항목을 제외한 모든 계측항목에서 높은 재현도를 보였다. 아울러 본 연구에서 설정한 18개의 계측점 중 $Go_{mid}_{-}_{lat},\;Go_{mid}_{-}_{obl}$가 포함된 계측항목이 조사자간 및 조사자내 재현도가 떨어지는 경향을 보였다. 이상의 면구 결과 본 연구에서 사용된 18개의 계측점 중 16개의 계측점 (과두를 나타내는 $Cd_{sup}_{-}_{sup},\;Cd_{lat}_{-}_{ant},\;Cd_{lat}_{-}_{lat},\;Cd_{post}_{-}_{lat},\;Cd_{post}_{-}_{post},\;S$, 하악우각부를 나타내는 $Go_{int}_{-}_{lat},\;Go_{inf}_{-}_{inf},\;Go_{lat}_{-}_{ant},\;Go_{lat}_{-}_{lat},\;Go_{post}_{-}_{lat},\;Go_{post}_{-}_{post},\;Ag_{-}_{lat},\;Ag_{-}_{inf}$, 하악정중부를 나타내는 $Me_{-}_{ant},\;M_{-}_{inf}$)은 높은 재현도를 보이므로 전산화단층사진을 이용한 하악골 3차원 영상에서 안면비대칭 환자의 진단에 유용하게 사용될 수 있음을 시사하였다.

Keywords

References

  1. Ahn JS, Hwang HS. Relationship between perception of facial asymmetry and posteroanterior cephalometric measurements. Korean J Orthod 2001;31:489-98
  2. Shah SM, Joshi MR. An assessment of asymmetry in the normal craniofacial complex. Angle Orthod 1978;48:141-8
  3. Peck S, Peck L, Kataja M. Skeletal asymmetry in esthetically pleasing faces. Angle Orthod 1991;61:43-8
  4. Broadbent BH. A new x-ray technique and its application to orthodontia. Angle Orthod 1931;1:45-66
  5. Vogel CJ. Correction of frontal dimensions from head x-rays. Angle Orthod 1967;37:1-8
  6. Jarvinen S. A study of the factors causing differences in the relative variability of linear radiographic cephalometric measurements. Am J Orthod Dentofacial Orthop 1987;92:17-23 https://doi.org/10.1016/0889-5406(87)90291-5
  7. Hatcher DC. Maxillofacial imaging. In: McNeill C, editor. Science and Practice of Occlusion. Chicago: Quintessence Publishing; 1997. p. 349-64
  8. Legrell PE, Nyquist H, Isberg A. Validity of identification of gonion and antegonion in frontal cephalograms. Angle Orthod 2000;70:157-64
  9. Berger H. Progress with basilar view cephalograms. Trans Eur Orthod Soc 1964;40:159-64
  10. Grayson B, Cutting C, Bookstein FL, Kim H, McCarthy JG. The three-dimensional cephalogram: theory, technique, and clinical application. Am J Orthod Dentofacial Orthop 1988;94: 327-37 https://doi.org/10.1016/0889-5406(88)90058-3
  11. Baumrind S, Moffitt FH, Curry S. Three-dimensional x-ray stereometry from paired coplanar images: a progress report. Am J Orthod 1983;84:292-312 https://doi.org/10.1016/S0002-9416(83)90346-9
  12. Baumrind S, Moffitt FH, Curry S. The geometry of three-dimensional measurement from paired coplanar x-ray images. Am J Orthod 1983;84:313-22 https://doi.org/10.1016/S0002-9416(83)90347-0
  13. Bookstein FL, Grayson B, Cutting CB, Kim HC, McCarthy JG. Landmarks in three dimensions: reconstruction from cephalograms versus direct observation. Am J Orthod Dentofacial Orthop 1991;100:133-40 https://doi.org/10.1016/S0889-5406(05)81520-3
  14. Kusnoto B, Evans CA, BeGole EA, de Rijk W. Assessment of 3-dimensional computer-generated cephalometric measurements. Am J Orthod Dentofacial Orthop 1999;116:390-9 https://doi.org/10.1016/S0889-5406(99)70223-4
  15. Koh EH, Lee KH, Hwang HS. Effects of vertical head rotation on the posteroanterior cephalometric measurements. Korean J Orthod 2003;33:73-84
  16. Vannier MW, Marsh JL, Warren JO. Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation. Radiology 1984;150:179-84 https://doi.org/10.1148/radiology.150.1.6689758
  17. Dawood R. Digital radiology-a realistic prospect? Clin Radiol 1990;42:6-11 https://doi.org/10.1016/S0009-9260(05)81613-7
  18. Lill W, Solar P, Ulm C, Watzek G, Blahout R, Matejka M. Reproducibility of three-dimensional CT-assisted model production in the maxillofacial area. Br J Oral Maxillofac Surg 1992;30:233-6 https://doi.org/10.1016/0266-4356(92)90265-K
  19. Altobelli DE, Kikinis R, Mulliken JB, Cline H, Lorensen W, Jolesz F. Computer-assisted three-dimensional planning in craniofacial surgery. Plast Reconstr Surg 1993;92:576-85 https://doi.org/10.1097/00006534-199309001-00003
  20. Fuhrmann RA, Frohberg U, Diedrich PR. Treatment prediction with three-dimensional computer tomographic skull models. Am J Orthod Dentofacial Orthop 1994;106:156-60 https://doi.org/10.1016/S0889-5406(94)70033-8
  21. Darling CF, Byrd SE, Allen ED. Three-dimensional computed tomography imaging in the evaluation of craniofacial abnormalities. J Natl Med Assoc 1994;86:676-80
  22. Fuhrmann RA, Schnappauf A, Diedrich PR. Three-dimensional imaging of craniomaxillofacial structures with a standard personal computer. Dentomaxillofac Radiol 1995;24:260-3 https://doi.org/10.1259/dmfr.24.4.9161172
  23. Fuhrmann R, Feifel H, Schnappauf A, Diedrich P. Integration of three-dimensional cephalometry and 3D-skull models in combined orthodontic/surgical treatment planning. J Orofac Orthop 1996;57:32-45 https://doi.org/10.1007/BF02189047
  24. Vannier MW, Hildebolt CF, Conover G, Knapp RH, Yokoyama-Crothers N, Wang G. Three-dimensional dental imaging by spiral CT. A progress report. Oral Surg Oral Med Pathol Oral Radiol Endod 1997;84:561-70 https://doi.org/10.1016/S1079-2104(97)90274-2
  25. Preda L, Di Maggio EM, Dore R, La Fianza A, Solcia M, Schifino MR, et al. Use of spiral computed tomography for multiplanar dental reconstruction. Dentomaxillofac Radiol 1997;26:327-31 https://doi.org/10.1038/sj.dmfr.4600290
  26. Cavalcanti MG, Vannier MW. Quantitative analysis of spiral computed tomography for craniofacial clinical applications. Dentomaxillofac Radiol 1998;27:344-50 https://doi.org/10.1038/sj.dmfr.4600389
  27. Quintero JC, Trosien A, Hatcher D, Kapila S. Craniofacial imaging in orthodontics: historical perspective, current status, and future developments. Angle Orthod 1999;69:491-506
  28. Chang HS, Baik HS. A proposal of landmarks for craniofacial analysis using three-dimensional CT imaging. Korean J Orthod 2002;32:313-25
  29. Hidelbolt CF, Vannier MW. Three-dimensional measurement accuracy of skull surface landmarks. Am J Phys Anthropol 1988;76:497-503 https://doi.org/10.1002/ajpa.1330760409
  30. Hidelbolt CF, Vannier MW, Knapp RH. Validation study of skull three-dimensional computerized tomography measurements. Am J Phys Anthropol 1990;82:283-94 https://doi.org/10.1002/ajpa.1330820307
  31. Williams FL, Richtsmeier JT. Comparison of mandibular landmarks from computed tomography and 3D digitizer data. Clin Anat 2003;16:494-500 https://doi.org/10.1002/ca.10095
  32. Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S. Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and three-dimensional CT scans. Cleft Palate Craniofac J 1997;34:111-6 https://doi.org/10.1597/1545-1569(1997)034<0111:COTROC>2.3.CO;2
  33. Xia J, Wang D, Samman N, Yeung RW, Tideman H. Computer-assisted three-dimensional surgical planning and simulation: 3D color facial model generation. Int J Oral Maxillofac Surg 2000;29:2-10 https://doi.org/10.1016/S0901-5027(00)80115-0
  34. Edler R, Wertheim D, Greenhill D. Comparison of radiographic and photographic measurement of mandibular asymmetry. Am J Orthod Dentofacial Orthop 2003;123:167-74 https://doi.org/10.1067/mod.2003.16
  35. Graber TM. New horizons in case analysis-clinical cephalometrics. Am J Orthod 1952;38:603-24 https://doi.org/10.1016/0002-9416(52)90027-4
  36. Ricketts RM. Provocations and perceptions in cranio-facial orthopedics. Denver: Rocky Mountain, Inc.; 1989. p. 797-803
  37. Sassouni V. Orthodontics in dental practice. St Louis: Mosby; 1971. p. 330-7
  38. Gugino CF. An orthodontic philosophy. Denver: Rocky Mountain; 1977. p. 1-2
  39. Peck H, Peck S. A concept of facial esthetics. Angle Orthod 1970;40:284-318