• Title/Summary/Keyword: 계절 강수예측

Search Result 57, Processing Time 0.035 seconds

Seasonal Precipitation Prediction using the Global model (전지구 모델 GME를 이용한 계절 강수 예측)

  • Kim, In-Won;Oh, Jai-Ho;Hong, Mi-Jin;Huh, Mo-Rang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.351-351
    • /
    • 2011
  • 최근 지구온난화와 더불어 이상기후가 대두됨에 따라 기상 예측이 더욱더 중요시되고 있다. 또한 이전부터 가뭄 및 홍수와 같은 기상현상으로 인한 피해 사례가 빈번하였으며, 이로 인하여 물 관리의 어려움을 겪고 있다. 한 예로 이상기후가 유난히 잦았던 2010년 여름철 경우 평년보다 발달한 북태평양고기압의 영향으로 여름철 92일 가운데 81일의 전국 평균기온이 평년보다 높게 나타났다. 또한 강우 일수가 평년에 비해 7.4일 많은 44.2일을 기록하였으며, 국지성 집중호우 사례가 빈번하였다. 또한 8월 9일 발생한 태풍 `뎬무'를 포함해서 한 달 동안 3개의 태풍이 한반도에 영향을 끼치는 이례적인 사례가 발생하였다. 따라서 본 연구는 이러한 기상재해에 따른 물 관리를 장기적으로 대비하고자 고해상도 전지구 모델 GME를 이용하여 2010년 여름철 강수 예측을 실시하였다. 강수 예측에 사용된 전지구 모델 GME는 기존의 카테시안 격자체계를 가진 모델과 달리 전구를 삼각형으로 구성된 20면체로 격자화 한 Icosahedral-hexagonal grid 격자체계로 구성되어 있어, 해상도 증가에 용이할 뿐만 아니라, HPC(High Performance Computing)환경에서 효율성이 높은 장점을 가지고 있다. 본 계절 예측을 수행함에 있어 발생하는 잡음을 최소화하고자, Time-lag 기법을 이용하여 5개의 앙상블 멤버로 구성되어있으며, 이를 비교 분석하기위해 Climatology를 이용하여 총 10개의 앙상블 멤버로 규준실험을 수행하였다. 선행 연구에 따르면 1개월 이상의 장기 적분의 경우 초기조건보다 외부 강제력이 더 중요한 역할을 한다고 연구된 바 있다. (Yang et al., 1998) 특히 계절 변동성의 경우 대기-해양간의 상호작용에 의해 지배되며, 이를 고려하여 본 연구는 해수면 온도를 경계 자료로 사용하여 계절 예측을 수행하였다. 앞서 말한 실험 계획을 바탕으로 하여 나온 결과를 통해 동아시아지역 및 한반도 도별 강수 및 온도 변수에 대해 순별 및 월별 카테고리맵 분석을 실시하여 한눈에 보기 쉽게 나타냈다. 또한 주요 도시별 강수량 및 온도의 시계열 분석을 실시하여 시간이 지남에 따라 나타나는 변동성을 확인하였다. 계절 예측 결과에서 온도의 경우 평년보다 높게 나타났으며, 이는 실제 온도 예측과도 유사한 패턴을 가졌다, 강수의 경우 7월부터 8월 중순까지 평년보다 다소 적게 모의되었으며, 8월 하순경 회복하는 것으로 예측하였다. 따라서 본 계절 강수 예측은 다소 역학 모델이 가지는 한계를 가지고 있으나, 실제와 비교하여 어느 정도의 경향성이나 패턴에 있어 유사성을 보임을 확인하였으며, 이를 장기적 차원의 물관리를 함에 있어 참고 및 활용 가능할 것으로 예상한다.

  • PDF

Seasonal precipitation prediction using ICON model (ICON모델을 이용한 계절 강수 예측)

  • Kim, Ga Eun;Oh, Jai Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.360-360
    • /
    • 2017
  • 이상기상현상의 발생횟수가 지속적으로 증가함에 따라 기상 예측은 국가 재난 관리에 중요한 요소로써 부상하고 있다. 계절예측 또한 재난관리의 한 부분으로, 농업, 에너지, 수자원 그리고 공공보건 등 다양한 분야에서 잠재적 위험을 파악하는데 도움이 되는 보조 자료로 활용이 가능하다. 본 연구에서는 ICON(ICOsahedral-Nonhydrostatic) 모델을 이용하여 2015년 여름철(JJA) 강수를 예측하였다. 2015년은 장마기간을 포함한 여름철 동안 평년대비 약 절반수준(54%)에 그치는 비가 내렸으며, 태풍으로 인한 강수량도 적어 연 강수량이 평년대비 72%로 역대 최저 3위를 기록하였다. 지역별로 보면 제주도와 남해안 지방을 제외한 대부분 지방에서 강수량이 적게 나타났으며, 수도권을 중심으로는 60% 미만의 강수량을 보였다. ICON 모델은 독일 기상청(DWD)과 막스플랑크 연구소(MPI-M)에서 공동 개발하여 현업 운영중인 전 지구 모델로 비정역학 코어를 사용한다. 전 지구를 정 20면체의 삼각형으로 격자화 시켜 모든 격자의 크기가 동일하고, 극점은 1개의 꼭짓점으로 구성되어 CFL(Courant-Friderich-Lewy) 문제가 해소될 수 있다. 또한 hybrid의 병렬구조를 사용하여 전산사용 효율성을 극대화 하는 특징이 있다. 강수의 계절 예측 수행 과정은 다음과 같다. 우선, 계절예측 자료 분석 시 활용할 ICON모델의 기후값을 생산하기 위해 30년(1980년~2009년)간의 AMIP기반 규준실험을 수행한다. 다음으로, SST와 Sea ice의 평년대비 현재 변동량을 계산하고, 이 자료는 모델 적분을 수행할 때 경계 자료로서 활용하게 된다. 계절 예측은 시간 지연기법(Time-lagged method)를 이용한 앙상블예측으로 수행하며, 예측하고자 하는 계절이 시작하기 약 1개원 이전부터 1일 간격으로 전 지구 모델의 초기자료를 다르게 선택하여 총 10개의 앙상블 멤버를 구성한다. 모델의 해상도는 수평 40km, 수직 90개 층으로 구성하였으며, 적분이 완료되면 AMIP기반 실험을 통해 모의된 기후값을 토대로 예측된 계절전망 자료의 변동성을 분석한다.

  • PDF

A Study on the Improvement of Quantitative Precipitation Forecast using a Clustering Method (군집기법을 이용한 연강수량 예보개선에 관한 연구)

  • Kim, Gwang-Seob;Jo, So-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.94-97
    • /
    • 2009
  • 연 및 계절강수량의 정확한 예보는 수자원관리에 매우 중요하다. 예보 정확도를 높이기 위한 다양한 연구가 계속 진행되어 왔다. 그럼에도 불구하고 강수자료가 가지는 매우 큰 불확실성 때문에 예보의 정확도 향상은 계속되는 숙제로 우리에게 남아 있다. 이를 개선하기 위하여 본 연구에서는 군집화 기법을 이용한 연 및 계절 강수량 예측개선에 대한 연구 결과를 제시하였다. 이를 위하여 연강수량, 계절강수량 및 월강수량의 예측을 위하여 전구에서 일어나는 각종 기후 인자들과의 상관성 분석은 대단히 중요하다. 전 세계적으로 어느 특정 지역에서의 선행 기후인자 변화 양상이 우리나라의 강수량에 높은 상관성을 가지며 영향을 미친다면 예측을 위한 매우 유용한 정보라 하겠으나 국내 강수량과 기후 지수 사이의 선형 상관성은 매우 낮을 뿐만 아니라 지체상관성도 특정 지체에서 매우 큰 상관성을 보이는 인자를 찾기 어려움을 알 수 있다. 이를 극복하기 위하여 본 연구에서는 k-mean clustering을 이용하여 우리나라 주변의 기후조건을 분류하고 기후조건에 따른 강수량의 변화를 분석하였다. 남중국해역($105^{\circ}E\;^{\sim}\;135^{\circ}E$, $0^{\circ}N\;^{\sim}\;35^{\circ}N$), 우리나라 연안 해역 ($110^{\circ}E\;^{\sim}\;150^{\circ}E$, $20^{\circ}N\;^{\sim}\;40^{\circ}N$), 인도양 해역 ($75^{\circ}E\;^{\sim}\;105^{\circ}E$, $0^{\circ}N\;^{\sim}\;25^{\circ}N$) 및 아라비아 해역 ($45^{\circ}E\;^{\sim}\;75^{\circ}E$, $0^{\circ}N\;^{\sim}\;30^{\circ}N$ 평균 해수면 온도 변화에 따라 8개 군집으로 분류한 분석결과로 분석결과 2008년도는 그룹 5에 해당하며 그룹 5의 기후 상태는 근해와 남중국해역의 평균 해수면 온도가 평년보다 낮고 인도양 해역과 아라비아 해역의 평균 해수면 온도는 평년값과 비슷한 상태를 나타낸다. 그룹 5에 해당하는 기후조건에서 차년의 강수평균은 평년값 보다 적음을 보였다. 이러한 특성은 전체 유역에 걸쳐 동일하게 나타났다. 이에 대한 계절적 평균 분포는 군집 5에 대한 차년도 강수의 평균 계절분포는 전체적으로 평년값보다 낮게 나타났다. 이에 근거하여 올해 연 평균 강수량은 평년값보다 적을 것이며 전체 계절에 대하여도 평년값보다 적은 강수량이 올 것으로 판단된다. 이는 기상청의 2009년 봄철 기후전망과 유사한 예측 결과를 보여준다.

  • PDF

Joint Probability Approach to Bias Correction on Rainfall Forecasting Using Climate State Variables (결합확률모델 및 기상변량을 이용한 예측강수의 편의보정 기법)

  • Jung, Min-Kyu;Kim, Tae-Jeong;Hwang, Kyu-Nam;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.309-309
    • /
    • 2019
  • 기후예측모델을 통해 일단위 강수의 예측정보가 제공되고 있지만, 실제 강수량자료와 시공간적 편의로 인해 수문학적 활용은 한계가 있다. 일반적으로 기후모델의 시공간적 해석 규모 및 예측정확성을 고려할 때 계절단위에서 예측정보의 활용이 가장 현실적인 것으로 알려지고 있다. 그러나 수문해석 시 시공간적 해상도가 낮아 직접적인 활용은 어려운 상황이며, 수문해석 모형의 입력자료로 활용 시 편의보정 및 상세화 과정이 일반적으로 요구된다. 본 연구에서는 기후모델로부터 얻은 강우예측결과에 Bayesian 모델 기반의 편의보정-상세화 기법을 개발하여 강우예측정보의 활용성을 개선하고자 한다. 이 과정에서 Bayesian Copula 모델을 이용한 이변량 형태의 예측강수의 검보정 방법을 개발하였으며, 특히 기후모델 이외의 기상 상태변량인 해수면온도(sea surface temperature, SST)를 예측인자로 추가하여 Hybrid 형태의 계절 앙상블 강우예측모델을 개발하고자 한다.

  • PDF

An Hourly Extreme Rainfall Outlook Using Climate Information (기상인자를 활용한 시단위 극치강우량 전망)

  • Kim, Yong-Tak;Hong, Min;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.14-14
    • /
    • 2018
  • 세계의 여러 국가에서 과거 발생했던 강수의 통계적 특성에서 벗어나는 극치사상이 빈번하게 관측되고 있다. 이와 같은 현상에 가장 큰 영향을 미치고 있는 요인중 하나는 지구온난화이며 실제 산업화 이후 온실가스의 증가와 더불어 극한 기상현상의 발생 빈도가 증가하였다. 현재 예상치 못한 수문사상의 발생으로 인해 수자원관리에 있어서 많은 어려움을 겪고 있으며, 특히 호우사상은 막대한 인명 및 사회적 피해를 야기하고 있다. 우리나라의 경우 계절적 특징으로 여름철에 강수가 집중되는 양상을 보이고 있으며 따라서 여름철 강수량을 예측하여 호우에 대한 대비책을 마련해야한다. 계절강수 예측은 수문, 산림, 식품, 등을 포함한 사회 경제적 파급 효과가 매우 크지만 아직 신뢰성 있는 예측은 어려운 상태이다. 또한, 발생 강도와 빈도가 큰 극한 강우는 주로 짧은 시간에 걸쳐 발생하기 때문에 예측하기가 어렵다. 최근 다양한 분야의 연구에서 AO, NAO, ENSO, PDO등과 같은 외부적 요인이 수문학적 빈도를 변화시킨다고 알려지고 있어 본 연구에서는 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 토대로 외부 기상인자에 의한 변동성을 고려할 수 있는 계절강수량 예측모형을 구축한 후 산정된 결과를 입력 자료로 하여 극치강수량을 추정할 수 있는 비정상성 Four - Parameter (4P)-Beta분포를 이용한 알고리즘을 개발하여 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 모형으로 확장하여 이를 통해 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용하고자 하였다.

  • PDF

Predicting Forest Fire in Indonesia Using APCC's MME Seasonal Forecast (MME 기반 APCC 계절예측 자료를 활용한 인도네시아 산불 예측)

  • Cho, Jaepil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.7-7
    • /
    • 2016
  • 인도네시아 산불에 의한 연무는 동남아시아 인접한 국가들에 있어서 심각한 환경문제 중 하나이다. 국제적으로 심각한 문제를 야기하는 인도네시아의 산불은 건조기에 강수량이 적게 내리는 극심한 가뭄 조건에서 발생한다. 건조기 강수량을 모니터링 하는 것은 산불 발생 가능성을 예측하기 위해 중요하지만 산불을 사전에 예방하고 영향을 최소화하기에는 부족하다. 따라서 산불에 대한 선제적 사전예방을 위해서는 수개월의 선행예측 기간을 갖는 조기경보 시스템이 절실하다. 따라서 본 연구는 인도네시아 산불에 대한 선제적 대응을 위한 강수량 예측시스템을 개발하고 예측성을 평가하여 동남아시아 지역의 화재 연무 조기경보 시스템의 시제품(Prototype)을 개발하는데 있다. 강수량 예측을 위해서 APEC 기후센터의 계절예측정보의 활용 정도에 따라서 4가지 서로 다른 방법을 통합하여 사용하였다. 예측정보 기반의 방법들로는 대상지역의 강수량 예측을 위해서 대상 지역 상공의 계절예측 강수자료를 보정을 통해 직접적으로 사용하는 SBC (Simple Bias Correction) 방법과 대상 지역 상공의 강수 예측자료를 사용하는 대신에 지역 강수량과 높은 상관 관계를 보이는 다른 지역의 대리변수를 예측인자로 사용하는 MWR (Moving Window Regression) 방법이 있다. 또한 예측자료의 사용 없이 과거자료 기반의 기후지수(Climate Index) 중에서 지체시간을 고려하여 지역 강수량과 높은 상관관계를 갖는 경우 예측에 활용하는 관측자료 기반의 CIR (Climate Index Regression) 방법과 예측기반 MWR과 관측기반의 CIR 방법에서 선정된 예측인자를 동시에 활용하는 ITR (Integrated Time Regression) 방법이 사용되었다. 장기 강수량 예측은 보르네오 섬의 4개 지역에서 3개월 이하의 선행예측기간에 대하여 0.5 이상의 TCC (Temporal Correlation Coefficient)의 값을 보여 양호한 예측성능을 보였다. 예측된 강수량 자료는 위성기반 관측 강수량 및 관측 탄소 배출량 관계에서 결정된 강수량의 임계값과의 비교를 통해 산불발생 가능성으로 환산하였다. 개발된 조기경보 시스템은 산불 발생에 가장 취약한 해당지역의 건조기(8월~10월) 강수량을 4월부터 예측해 산불 연무에 대한 조기경보를 수행한다. 개발된 화재 연무조기경보 시스템은 지속적인 개선을 통해 현장 실효성을 높여 동남아국가 정부의 화재 및 산림관리자들에게 보급함으로써 동남아의 화재 연무로 인한 환경문제 해결에 기여할 수 있으리라 판단된다.

  • PDF

Improvement of precipitation forecasting skill of ECMWF data using multi-layer perceptron technique (다층퍼셉트론 기법을 이용한 ECMWF 예측자료의 강수예측 정확도 향상)

  • Lee, Seungsoo;Kim, Gayoung;Yoon, Soonjo;An, Hyunuk
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.475-482
    • /
    • 2019
  • Subseasonal-to-Seasonal (S2S) prediction information which have 2 weeks to 2 months lead time are expected to be used through many parts of industry fields, but utilizability is not reached to expectation because of lower predictability than weather forecast and mid- /long-term forecast. In this study, we used multi-layer perceptron (MLP) which is one of machine learning technique that was built for regression training in order to improve predictability of S2S precipitation data at South Korea through post-processing. Hindcast information of ECMWF was used for MLP training and the original data were compared with trained outputs based on dichotomous forecast technique. As a result, Bias score, accuracy, and Critical Success Index (CSI) of trained output were improved on average by 59.7%, 124.3% and 88.5%, respectively. Probability of detection (POD) score was decreased on average by 9.5% and the reason was analyzed that ECMWF's model excessively predicted precipitation days. In this study, we confirmed that predictability of ECMWF's S2S information can be improved by post-processing using MLP even the predictability of original data was low. The results of this study can be used to increase the capability of S2S information in water resource and agricultural fields.

Exploring Long-ragne-based predictive ability of early winter for water management of the dry season over the Korean Peninsula (한반도 건기의 수자원 관리를 위한 초겨울 강수의 중장기 예측)

  • Noh, Gyu-Ho;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.176-176
    • /
    • 2021
  • 한반도의 강수를 예측하는 것은 수자원 관리 측면에서 매우 중요하다. 한반도의 강수는 연별 변동 뿐 아니라 계절별로 변동을 갖는다. 우리는 이 중 건기(Dry period)의 가뭄과 그 이후 농번기(3월, 4월)에 영향을 미치는 초겨울(11월, 12월)의 강수를 예측은 수자원 관리에 있어서 중요한 의미를 갖는다. 본 연구에서는 Regularized regression 모형인 Elastic net model을 이용하여 중장기 (7개월 이상)기반으로 초겨울의 강우 예측의 가능성에 대해서 논하고자 한다. 특히, 본 연구에서는 우리나라의 초겨울 강우의 변동이 대서양의 대규모의 대기 순환과 밀접한 관계를 보이는 것을 확인하였으며 이를 논하기 위해서 Sea Surface Temperature (SST) 등의 자료를 사용하여 분석하였다. 이 시간적 지체 효과를 갖고 있는 대기 순환은 Eurasia 지역을 기반으로 횡적인 순환과 관련이 깊은 것으로 파악되었다. 본 연구의 결과는 앞으로 우리나라의 가뭄관리에 유용하게 활용될 것으로 기대된다.

  • PDF

Characterization of the temporal variability of seasonal precipitation using hourly precipitation data (시강우 자료를 이용한 계절별 강수특성 변화분석)

  • Kim, Gwang-Seob;Cho, Hyun-Gon;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.399-399
    • /
    • 2011
  • 최근 한반도와 세계 곳곳에서 기후변화로 야기되는 이상기후에 의한 피해가 늘고 있으며, 그 피해 규모와 빈도 또한 점점 증가하는 추세이다. 이러한 추세 속에서 인적, 물적 피해를 최소화하기 위해 세계 각국이 기후변화에 대한 정확한 예측을 위한 많은 노력과 연구가 진행되고 있다. 지금까지 수행된 연구들은 일반적으로 강수특성의 변화를 파악하기 위해서 연 및 월 최대 강우량, 지속시간별 최대 강우량 등 총량적 개념을 이용한 연구가 대부분이다. 그러나 이는 실제 강수사상의 구조적 변화를 파악하는 데 있어서 한계가 있다. 본 연구에서는 전국 기상관측소 59개의 지점에 대한 1961년-2009년까지의 시계열 강수자료를 이용하여 지점 및 유역별 강수사상의 number of rain even, duration, intensity, quantity 시간분포 구조의 변화를 파악하고자 하였다. 분석결과 number of rain event와 total quantity는 전국적으로 증가 하였으며 total rain hour는 남해안 지역을 제외한 전국에서 증가 하는 것으로 분석 되었다. 결과를 바탕으로 강수변화의 패턴과 추세를 보다 정확하게 파악하고 미래강수 예측에 유용한 자료로 활용될 것으로 사료된다.

  • PDF

A Prediction of Northeast Asian Summer Precipitation Using the NCEP Climate Forecast System and Canonical Correlation Analysis (NCEP 계절예측시스템과 정준상관분석을 이용한 북동아시아 여름철 강수의 예측)

  • Kwon, MinHo;Lee, Kang-Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.88-94
    • /
    • 2014
  • The seasonal predictability of the intensity of the Northeast Asian summer monsoon is low while that of the western North subtropical high variability is, when state-of-the-art general circulation models are used, relatively high. The western North Pacific subtropical high dominates the climate anomalies in the western North Pacific-East Asian region. This study discusses the predictability of the western North Pacific subtropical High variability in the National Centers for Environmental Prediction Climate Forecast System (NCEP CFS). The interannual variability of the Northeast Asian summer monsoon is highly correlated with one of the western North Pacific subtropical Highs. Based on this relationship, we suggest a seasonal prediction model using NCEP CFS and canonical correlation analysis for Northeast Asian summer precipitation anomalies and assess the predictability of the prediction model. This methodology provides significant skill in the seasonal prediction of the Northeast Asian summer rainfall anomalies.