• 제목/요약/키워드: 계절예측모델

검색결과 174건 처리시간 0.029초

ICON모델을 이용한 계절 강수 예측 (Seasonal precipitation prediction using ICON model)

  • 김가은;오재호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.360-360
    • /
    • 2017
  • 이상기상현상의 발생횟수가 지속적으로 증가함에 따라 기상 예측은 국가 재난 관리에 중요한 요소로써 부상하고 있다. 계절예측 또한 재난관리의 한 부분으로, 농업, 에너지, 수자원 그리고 공공보건 등 다양한 분야에서 잠재적 위험을 파악하는데 도움이 되는 보조 자료로 활용이 가능하다. 본 연구에서는 ICON(ICOsahedral-Nonhydrostatic) 모델을 이용하여 2015년 여름철(JJA) 강수를 예측하였다. 2015년은 장마기간을 포함한 여름철 동안 평년대비 약 절반수준(54%)에 그치는 비가 내렸으며, 태풍으로 인한 강수량도 적어 연 강수량이 평년대비 72%로 역대 최저 3위를 기록하였다. 지역별로 보면 제주도와 남해안 지방을 제외한 대부분 지방에서 강수량이 적게 나타났으며, 수도권을 중심으로는 60% 미만의 강수량을 보였다. ICON 모델은 독일 기상청(DWD)과 막스플랑크 연구소(MPI-M)에서 공동 개발하여 현업 운영중인 전 지구 모델로 비정역학 코어를 사용한다. 전 지구를 정 20면체의 삼각형으로 격자화 시켜 모든 격자의 크기가 동일하고, 극점은 1개의 꼭짓점으로 구성되어 CFL(Courant-Friderich-Lewy) 문제가 해소될 수 있다. 또한 hybrid의 병렬구조를 사용하여 전산사용 효율성을 극대화 하는 특징이 있다. 강수의 계절 예측 수행 과정은 다음과 같다. 우선, 계절예측 자료 분석 시 활용할 ICON모델의 기후값을 생산하기 위해 30년(1980년~2009년)간의 AMIP기반 규준실험을 수행한다. 다음으로, SST와 Sea ice의 평년대비 현재 변동량을 계산하고, 이 자료는 모델 적분을 수행할 때 경계 자료로서 활용하게 된다. 계절 예측은 시간 지연기법(Time-lagged method)를 이용한 앙상블예측으로 수행하며, 예측하고자 하는 계절이 시작하기 약 1개원 이전부터 1일 간격으로 전 지구 모델의 초기자료를 다르게 선택하여 총 10개의 앙상블 멤버를 구성한다. 모델의 해상도는 수평 40km, 수직 90개 층으로 구성하였으며, 적분이 완료되면 AMIP기반 실험을 통해 모의된 기후값을 토대로 예측된 계절전망 자료의 변동성을 분석한다.

  • PDF

근지표면 온도 예측성이 계절적 예보에 미치는 영향: 미국 가뭄의 사례연구 (Role of the prediction skill of near-surface temperature in seasonal forecasting: A case study of U.S. droughts)

  • 감종훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.73-73
    • /
    • 2021
  • 가뭄의 계절적 예측성을 개선하기 위해서는 대기-지면-해양의 상호 작용이 현실적으로 모의할 수 있는 지구 기후 예보 모델의 개선이 필수적이다. 제한적인 기후 예보 모델의 예측성으로 인하여 다중 기후 모델들의 다중 앙상블 계절 예보 시스템이 제안되었다. 2008년에 제안된 북미 다중 모델 다중 앙상블 시스템(North American Multimodel Multiensemble System; NMME)은 다양한 모델 개발팀의 참여로 현재까지 운영되면서 계절적 예측성 연구에 큰 이바지를 하였다. 본 연구에서는 NMME 프로젝트에 참여하는 기후 예보 모델들의 북방 여름철 근지표면 온도과 강우량의 예측성을 진단하고 이들의 상관 관계의 강도를 관측데이터와 비교 분석하였다. 대부분의 NMME 모델들에서는 관측데이터에서 보다 강한 음의 상관 관계를 보였다. 이런 근지표면 온도와 강우량의 강한 상관 관계로 우수한 근지 표면 온도 예보는 각각의 해마다 그 역할이 다른 것을 발견되었다. 예를 들어 가문 여름에는 우수한 근지표면 온도 예보가 강우량 예보에 도움이 되고 강우량이 많은 여름에는 우수한 근지표면 온도 예보는 오히려 강우량 예측성을 제한하게 된다. 따라서 기존의 기후 예보 모델들에서 근지표면 온도와 강우량의 상관관계를 사실적으로 나타낼 수 있도록 모델 개선이 요구된다. 마지막으로 관측데이터와 기후 모델데이터에서 태평양과 대서양의 해수면 온도와 미국의 북방 여름철 날씨의 관계를 비교하였다. 근지표면 온도과 강우량에 대한 제한적 예측성에 비해, 대부분의 NMME 기후 예보 모델들에서 해수면 온도의 예측기술은 우수함을 발견하였고 몇몇 모델들에서는 미국의 북방 여름철 기후에 영향력을 주는 대서양과 태평양의 지역까지 잘 모사하는 것을 발견하였다. 따라서 본 연구는 보다 우수한 기후 예보 기술을 위해 앙상블 평균 예보값만이 아닌 NMME의 계절적 예보를 선택적인 사용이 필요함을 제안하였고 앞으로 북미 대륙 뿐만이 아니라 유럽-아시아의 계절적 이상 기후 예측성에 대한 연구 필요성을 강조하였다.

  • PDF

스펙트럼 분석과 계절성 선형 모델을 이용한 Intra-Day 콜센터 통화량예측 (Spectral Analysis Accompanied with Seasonal Linear Model as Applied to Intra-Day Call Prediction)

  • 신택수;김명석
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.217-225
    • /
    • 2011
  • 본 논문에서는 스펙트럼 분석과 계절성 선형 모델을 이용하여 intra,-day 콜센터 통화량 예측에 필요한 계절성 변수를 찾아내는 방법을 제시한다. 제시한 방법을 북미 지역의 어느 은행의 5분 단위 콜센터 통화량에 실증 적용하여 기존의 통계적 방법으로는 입증할 수 없었던 월 단위 계절성 변수가 유의함을 보인다. 새로이 찾아진 연수가 intra-day 콜센터 통화량 예측능력을 향상시키는지 확인하기 위해서 새로운 변수를 포함하는 계절성 선형 모델과 이 변수를 포함하지 않은 계절성 선형 모델의 익일 통화량 예측능력을 비교 평가한다. 평가결과 새로운 변수를 포함한 모델이 우수하다는 결과를 얻었다.

머신러닝 및 딥러닝 모델의 스태킹 앙상블을 이용한 단기 전력수요 예측에 관한 연구 (A Study on Short-Term Electricity Demand Prediction Using Stacking Ensemble of Machine Learning and Deep Learning Ensemble Models)

  • 이정일;김동일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.566-569
    • /
    • 2021
  • 전력수요는 월, 요일 및 시간의 계절성(Seasonality)을 보이는 데이터이다. 각 계절성에 따라 특성이 다르기 때문에, 전력수요를 예측하기 위해서는 계절성의 특성을 고려한 다양한 모델을 선정하고, 병합하는 방법이 필요하다. 본 연구에서는 전력수요의 계절성을 고려한 다양한 예측모델을 병합하여 이용할 수 있도록 스태킹 앙상블 적용하고 실험결과를 기술한다. 또한, 162개 도시의 기상 데이터와 인구 데이터를 예측에 이용하는 방법, Regression 모델과 Time-series모델에 입력하는 특징(Feature)의 전처리 방법, 베이지안 최적화를 이용한 머신러닝 및 딥러닝 모델의 하이퍼파라메터 최적화 방법을 제시한다.

결합확률모델 및 기상변량을 이용한 예측강수의 편의보정 기법 (Joint Probability Approach to Bias Correction on Rainfall Forecasting Using Climate State Variables)

  • 정민규;김태정;황규남;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.309-309
    • /
    • 2019
  • 기후예측모델을 통해 일단위 강수의 예측정보가 제공되고 있지만, 실제 강수량자료와 시공간적 편의로 인해 수문학적 활용은 한계가 있다. 일반적으로 기후모델의 시공간적 해석 규모 및 예측정확성을 고려할 때 계절단위에서 예측정보의 활용이 가장 현실적인 것으로 알려지고 있다. 그러나 수문해석 시 시공간적 해상도가 낮아 직접적인 활용은 어려운 상황이며, 수문해석 모형의 입력자료로 활용 시 편의보정 및 상세화 과정이 일반적으로 요구된다. 본 연구에서는 기후모델로부터 얻은 강우예측결과에 Bayesian 모델 기반의 편의보정-상세화 기법을 개발하여 강우예측정보의 활용성을 개선하고자 한다. 이 과정에서 Bayesian Copula 모델을 이용한 이변량 형태의 예측강수의 검보정 방법을 개발하였으며, 특히 기후모델 이외의 기상 상태변량인 해수면온도(sea surface temperature, SST)를 예측인자로 추가하여 Hybrid 형태의 계절 앙상블 강우예측모델을 개발하고자 한다.

  • PDF

전지구 모델 GME를 이용한 계절 강수 예측 (Seasonal Precipitation Prediction using the Global model)

  • 김인원;오재호;홍미진;허모랑
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.351-351
    • /
    • 2011
  • 최근 지구온난화와 더불어 이상기후가 대두됨에 따라 기상 예측이 더욱더 중요시되고 있다. 또한 이전부터 가뭄 및 홍수와 같은 기상현상으로 인한 피해 사례가 빈번하였으며, 이로 인하여 물 관리의 어려움을 겪고 있다. 한 예로 이상기후가 유난히 잦았던 2010년 여름철 경우 평년보다 발달한 북태평양고기압의 영향으로 여름철 92일 가운데 81일의 전국 평균기온이 평년보다 높게 나타났다. 또한 강우 일수가 평년에 비해 7.4일 많은 44.2일을 기록하였으며, 국지성 집중호우 사례가 빈번하였다. 또한 8월 9일 발생한 태풍 `뎬무'를 포함해서 한 달 동안 3개의 태풍이 한반도에 영향을 끼치는 이례적인 사례가 발생하였다. 따라서 본 연구는 이러한 기상재해에 따른 물 관리를 장기적으로 대비하고자 고해상도 전지구 모델 GME를 이용하여 2010년 여름철 강수 예측을 실시하였다. 강수 예측에 사용된 전지구 모델 GME는 기존의 카테시안 격자체계를 가진 모델과 달리 전구를 삼각형으로 구성된 20면체로 격자화 한 Icosahedral-hexagonal grid 격자체계로 구성되어 있어, 해상도 증가에 용이할 뿐만 아니라, HPC(High Performance Computing)환경에서 효율성이 높은 장점을 가지고 있다. 본 계절 예측을 수행함에 있어 발생하는 잡음을 최소화하고자, Time-lag 기법을 이용하여 5개의 앙상블 멤버로 구성되어있으며, 이를 비교 분석하기위해 Climatology를 이용하여 총 10개의 앙상블 멤버로 규준실험을 수행하였다. 선행 연구에 따르면 1개월 이상의 장기 적분의 경우 초기조건보다 외부 강제력이 더 중요한 역할을 한다고 연구된 바 있다. (Yang et al., 1998) 특히 계절 변동성의 경우 대기-해양간의 상호작용에 의해 지배되며, 이를 고려하여 본 연구는 해수면 온도를 경계 자료로 사용하여 계절 예측을 수행하였다. 앞서 말한 실험 계획을 바탕으로 하여 나온 결과를 통해 동아시아지역 및 한반도 도별 강수 및 온도 변수에 대해 순별 및 월별 카테고리맵 분석을 실시하여 한눈에 보기 쉽게 나타냈다. 또한 주요 도시별 강수량 및 온도의 시계열 분석을 실시하여 시간이 지남에 따라 나타나는 변동성을 확인하였다. 계절 예측 결과에서 온도의 경우 평년보다 높게 나타났으며, 이는 실제 온도 예측과도 유사한 패턴을 가졌다, 강수의 경우 7월부터 8월 중순까지 평년보다 다소 적게 모의되었으며, 8월 하순경 회복하는 것으로 예측하였다. 따라서 본 계절 강수 예측은 다소 역학 모델이 가지는 한계를 가지고 있으나, 실제와 비교하여 어느 정도의 경향성이나 패턴에 있어 유사성을 보임을 확인하였으며, 이를 장기적 차원의 물관리를 함에 있어 참고 및 활용 가능할 것으로 예상한다.

  • PDF

급수수요량의 계절별 예측모델에 관한 연구 (Seasonal Prediction Model for Urban Water Demand)

  • 구자용
    • 수도
    • /
    • 제23권6호통권81호
    • /
    • pp.36-46
    • /
    • 1996
  • 급수 수요량의 단기예측은 상수도 시스템의 유지관리 계획 수립의 중요한 구성 요소이며, 대상지역의 특성을 민감하게 반영하고 있으므로, 급수수요의 지역 특성과 관련된 수요 구조의 파악이 무엇보다 중요한 과제라 할 수 있다. 따라서 본 논문에서는 상수도 시스템의 합리적 배수 제어 획을 실시하기 위한 기초적 정보인 급수량 변동 구조에 대해 통계적인 분석을 실시하였다. 특히 일단위의 급수량에 초점을 두어 급수량의 시계열 특성과 급수량 영향 요인 분석을 통하여 대상 지역의 정상 시계열장과 급수량에 영향을 미치는 요인을 분석하였다. 또한 급수량의 계절별 단기 수요 예측 모델을 제안하기 위하여 통계적 예측 수법으로 평가 받고 있는 MARIMA (Multiple Auto Regressive Integrated Moving Average) 모델을 급수량 단기 수요 예측에 적용하여 계절별 급수 수요량을 예측하였다.

  • PDF

전지구 계절예측시스템 GloSea5의 최적 편의보정기법 선정 (A selection of optimal method for bias-correction in Global Seasonal Forecast System version 5 (GloSea5))

  • 손찬영;송정현;김세진;조영현
    • 한국수자원학회논문집
    • /
    • 제50권8호
    • /
    • pp.551-562
    • /
    • 2017
  • 2014년부터 기상청에서 현업으로 활용하고 있는 전지구 계절예측시스템 GloSea5의 최대 6개월 예측 강수량을 수자원 및 여러 응용분야에 활용하기 위해서는 예측모델이 가지는 관측자료와의 정량적인 편의를 보정할 필요가 있다. 본 연구에서는 GloSea5의 예측 강수량에서 나타나는 편의를 보정하기 위해 확률분포형을 활용한 편의보정기법, 매개변수 및 비매개변수적 편의보정기법 등 총 11개의 기법을 활용하여 계절예측모델의 적용성을 평가하고 최적의 편의보정기법을 선정하고자 하였다. 과거재현기간에 대한 편의보정 결과, 비매개변수적 편의보정기법이 다른 기법에 비해 가장 관측자료와 유사하게 보정하는 것으로 분석되었으나 예측기간에 대해서는 상대적으로 많은 이상치를 발생시켰다. 이와는 대조적으로 매개변수적 편의보정기법은 과거재현기간 및 예측기간 모두 안정된 결과를 보여주고 있음을 확인할 수 있었다. 본 연구의 결과는 수자원운영 및 관리, 수력, 농업 등 계절예측모델을 활용한 여러 응용분야에 적용이 가능할 것으로 기대된다.

광역규모 예측인자를 이용한 한반도 계절 강수량의 장기 예측 (Long-term Forecast of Seasonal Precipitation in Korea using the Large-scale Predictors)

  • 김화수;곽종흠;소선섭;서명석;박정규;김맹기
    • 한국지구과학회지
    • /
    • 제23권7호
    • /
    • pp.587-596
    • /
    • 2002
  • 경험적 직교함수(EOF)분석법과 다중회귀법에 기초하여 지연상관된 광역규모 예측인자로부터 3개월 이전에 계절 강수량을 예측할 수 있는 슈퍼앙상블 모델이 개발되었다. 이 모델의 예측성이 교차검증법에 의해 평가되었다. 관측값과 예측값사이의 상관계수는 봄철에 0.73, 여름철에 0.61, 가을철에 0.69, 겨울철에 0.75로 나타났다. 이러한 값은 유의수준 ${\alpha}$=0.00에서 유의한 값이다. 수퍼 앙상블 방법의 범주형 예측성이 3개 범주로 나누어진 사례에 대해서 평가되었다. 3개 범주는 계절 누적강수량의 상위 33.3%를 과우해, 하위 33.3%를 소우해, 그 나머지를 평년해로 구분하였다. 범주형 예측의 적중률은 계절에 따라 42%에서 74%로 나타났다.

북서태평양 태풍의 여름과 가을철 예측시스템 개발과 한반도 영향 태풍 예측에 활용 (Seasonal Prediction of Tropical Cyclone Activity in Summer and Autumn over the Western North Pacific and Its Application to Influencing Tropical Cyclones to the Korean Peninsula)

  • 최우석;허창회;강기룡;윤원태
    • 대기
    • /
    • 제24권4호
    • /
    • pp.565-571
    • /
    • 2014
  • 본 연구에서는 국가태풍센터에서 운영하는 북서태평양 태풍 진로 계절예측모델의 6월부터 10월까지의 고정된 예측시점을 현업 예보자가 목적에 따라 3개월 단위로 그 예측기간을 조정할 수 있도록 개선하였다. 여름철과 가을철 태풍 전망을 발표하는 기상청 장기예보 일정에 부합해 예측결과를 산출하기 위해 계절별로 나누어 북서태평양의 대표적 태풍 진로 유형을 새로 분류하고 각 유형별 대규모 순환장과의 상관성을 분석해서 예측모델을 개발하였다. 이 모델들의 성능을 평가하고 현업에서의 활용 가능성을 확인하기 위해 교차타당화 방법을 이용해 1982년부터 2010년까지 과거기간 동안의 예측성능을 검증하였다. 태풍 진로 밀도의 예측에 있어 관측과 모델 값의 상관계수는 여름철에 0.70, 가을철에 0.55 정도를 보였으며, 이는 예측치가 관측에서 나타난 변동성의 99% 유의수준에서 모의되는 것으로 나타났다. 두 계절 모두 기후적인 관점에서 우수한 예측성능을 보였고, 또한 기존에 개발되었던 6월부터 10월까지 기간을 대상으로 하는 모델의 성능과 비슷한 수준인 것으로 나타났다. 이러한 예측 대상기간의 수정은 사용자가 본 모델의 초기 입력자료로 사용되는 네임리스트 입력 파라미터를 조정해 쉽게 조절할 수 있다. 또한 본 모델 예측 결과에 한반도 비상구역의 결과를 집중해서 산출하는 후처리 모듈을 추가하여 현업 예보에서 신속하게 모델을 구동하고 정확한 한반도 태풍활동 예측결과를 산출할 수 있도록 하였다. 비록 가을철 한반도 비상구역 태풍활동의 피크 해 모의에 한계성이 일부 나타났으나 향후 새로운 예측인자 도입 및 최적화, 다른 회귀분석 방법 시험 등을 통해 극복할 수 있을 것이다. 이 연구를 통해 개발된 3개월 단위 예측 모듈, 유저 친화적 인터페이스, 그리고 후처리 스크립트 추가를 통한 한반도 지역 예측기능들은 기상청 국가태풍센터의 태풍 장기 예보 업무에 큰 도움이 될 것으로 기대된다.