• Title/Summary/Keyword: 계수가진계

Search Result 73, Processing Time 0.028 seconds

Performance Criterion-based Polynomial Calibration Model for Laser Scan Camera (레이저 스캔 카메라 보정을 위한 성능지수기반 다항식 모델)

  • Baek, Gyeong-Dong;Cheon, Seong-Pyo;Kim, Su-Dae;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.555-563
    • /
    • 2011
  • The goal of image calibration is to find a relation between image and world coordinates. Conventional image calibration uses physical camera model that is able to reflect camera's optical properties between image and world coordinates. In this paper, we try to calibrate images distortion using performance criterion-based polynomial model which assumes that the relation between image and world coordinates can be identified by polynomial equation and its order and parameters are able to be estimated with image and object coordinate values and performance criterion. In order to overcome existing limitations of the conventional image calibration model, namely, over-fitting feature, the performance criterion-based polynomial model is proposed. The efficiency of proposed method can be verified with 2D images that were taken by laser scan camera.

Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves (홈이 회전하는 빗살무늬 저널 베어링의 안정성 해석)

  • 윤진욱;장건희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.247-257
    • /
    • 2003
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic Journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

Change in Magnetic Flux in the Air Due to Load (하중에 의한 공기중 자속의 변화)

  • Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • In order to determine the effective way of measuring the Mode I stress intensity factor($K_1$) by means of the alternating current potential drop(ACPD) technique for a material containing a two-dimensional surface crack, the change in magnetic flux in the air due to load was studied theoretically and experimentally. The magnetic flux in the air between crack surfaces is uniform and is not changed by increasing the load in the specimen and experimental results are the same as those obtained from theoretical analysis. Therefore, the change in potential drop due to load in the measuring system which was designed to induce a large amount of electro-motive force was caused by the change in internal inductance of material and the change in the mutual inductance concerned with internal inductance of material.

Multiple Scattering of Elastic SH Waves by Randomly Distributed Ciecular Cylinders : Characterization of Dynamic Properties of FRC (랜덤하게 분포한 원형 실린더에 의한 SH 탄성파의 다중산란 : 섬유강화 복합재료의 동특성파악)

  • Kim, Jin-Yeon;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.22-30
    • /
    • 1992
  • The propagation of coherent time-harmonic elastic SH waves in a medium with random distribution of cylindrical inclusions is studied for characterizing the dynamic elastic modulus and the attenuation property of fiber-reinforced composite materials. A multiple scattering theory using the single scattering coefficients in conjunction with the Lax's quasicrystalline approximation is derived and from which the dispersion relation for such medium is obtained. The pair-correlation functions between the cylinders which are needed to formulate the multiple scattering interaction between the cylinders are obtained by Monte Carlo simulation method.From the numerically calculated complex wavenumbers, the propagation speed of the average wave, the coherent attenuation coefficient and the effective shear modulus are presented as functions of frequency and area density.

  • PDF

Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves (홈이 회전하는 빗살무의 저널 베어링의 안정성 해석)

  • 윤진욱;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.166-174
    • /
    • 2002
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

  • PDF

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

Seismic Analysis of Vertical Pump in Power Plant (발전소용 입축펌프의 내진해석)

  • 최수용;박철희;홍성철;박용석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.163-168
    • /
    • 1993
  • 현대 산업사회에서 발전소는 중요한 시설물이다. 특히 원자력발전소는 지진 과 같은 천재지변시 매우 위험하기 때문에 내진설계가 필수적으로 요구되어 진다. 최근 국내 원자력발전소의 증가와 1986년 이후 만들어진 내진관련 법 규에 따라 내진설계가 보편화 되어가고 있다. 본 연구에서는 발전소에서 쓰 이는 입축펌프를 해석대상기종으로하여 구조해석과 내진해석을 수행하엿다. 입축펌프는 큰 질량을 가진 모터가 펌프의 윗부분에 위치하고 있어 진동문 제가 야기되는 기종이다. 펌프의 고유진동수는 기초부의 강성과 수조의 내수 위에 따라 변하며, 펌프의 축계의 진동수에 비하여 구조계의 진동수가 운전 회전수에 가깝기 때문에 구조계의 진동이 문제시된다. 해석에 있어서 펌프는 단면이 변하는 Euler Beam으로 보고 유한요소법을 사용하여 모델링하였고, 물의 저항에 의한 부가질량을 고려하였다. 내진해석은 응답스펙트럼법으로 수행하였으며 GRS는 Housner가 0.2g에 대하여 제작한 것을 OBE 조건 (0.12g)으로 scaling하여 사용하였다. 각 모드에 대한 합성방법은 SRSS 법을 적용하였다. 또한 응답스펙트럼법과 시간이력해석의 결과를 비교하였으며, 시간이력해석에서, 수치해석방법으로는 Newmark법을 적용하였다. 지진자료 는, 1940년, California에서 발생한 Elcentro 지진 자료를 이용하였다. 연구수 행과정에서 기초강성계수와 수조내 물의 수위를 주된 인자로 하여 이들의 값에 따라 변하는 고유진동수를 고찰하고, 지진입력시 예상되는 최대응답을 구하여, 비교 분석하였다.

  • PDF

초광대역전송선형 FM 변별기에 관한 연구

  • 이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.2 no.1
    • /
    • pp.10-13
    • /
    • 1965
  • 본논문은 단종된 전송선과 개방된 전송선 및 2개의 결합저항기로 구성된 초광대역전송선형 FM변별기의 동적인 해석(dynamic analysis)을 취급하였다. 변별기의 출력파형의 Harmonic Distortion과 입력신호의 최대허용주파수변위와의 제관계를 Fourier transfrom으로 상세하게 해석하였다. 결합저항계수r(Fig 1 참조)는 변별기의 감도와 입력신호의 전주파수변위에 걸쳐 입력 Impedance가 일정하다는 견지에서 일로 놓아야 된다는 것이 판명되었다. 이론상으로는 100%의 주파수변위를 가진 FM신호라도 본변별기로 불과 2.6% Harmonic distortion으로 검파할 수 있으며 또한 검파시에 변별기의 입력 Impedance는 전종선의 특성 Impedance Z0로 일정하게 유지된다. 이론적인 결과를 뒷받침하기 위하여 실험결과를 첨부하였다. 본실험에서는 변별기의 특성곡선이 중심주파수 85.5Mc를 중심으로 40%의 주파수변위에 대하여 Linear하며, 또한 이때의 변별기의 입력 Impedance의 변화율은 이상치 Z0의 ±14% 이내이다.

  • PDF

Modal Analysis of a Rotating Packet Blade System having a Crack (한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석)

  • Kwon, Seung-Min;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1244-1251
    • /
    • 2009
  • In this paper the vibrational behavior of a multi-packet blade system having a cracked blade is investigated. Each blade is assumed as a slender cantilever beam. The coupling stiffness effect that originates from either disc flexibility or shroud is considered in the modeling. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. In the paper, the results of the change in modal parameters due to crack appearance are presented. The influence of the crack parameters, especially of the changing location of the crack is examined.

Numerical Implication of Concrete Material Damage at the Finite Element Levels (콘크리트 재료손상에 대한 유한요소상의 의미)

  • Rhee, In-Kyu;Roh, Young-Sook;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.37-46
    • /
    • 2006
  • The principal objective of this study is to assess the hierarchical effects of defects on the elastic stiffness properties at different levels of observation. In particular, quantitative damage measures which characterize the fundamental mode of degradation in the form of elastic damage provide quite insightful meanings at the level of constitutive relations and at the level of structures. For illustration, a total of three model problems of increasing complexity, a 1-D bar structure, a 2-D stress concentration problem, and a heterogeneous composite material made of a matrix with particle inclusions. Considering a damage scenario for the particle inclusions the material system degrades from a composite with very stiff inclusions to a porous material with an intact matrix skeleton. In other damage scenario for the matrix, the material system degrades from a composite made of a very stiff skeleton to a disconnected assembly of particles because of progressive matrix erosion. The trace-back and forth of tight bounds in terms of the reduction of the lowest eigenvalues are extensively discussed at different levels of observation.