• 제목/요약/키워드: 계산 오류 활용

검색결과 108건 처리시간 0.019초

테크놀로지를 활용한 교수학적 환경에서 대수적 연산 오류 지도에 관한 연구

  • 박용범;탁동호
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권1호
    • /
    • pp.223-237
    • /
    • 2004
  • 본 연구는 중학교 1학년을 대상으로 일차방정식의 풀이 과정에서 나타나는 오류를 분석하고 그래핑 계산기를 활용하여 오류의 교정 과정을 제시하였다. 오류의 유형을 개념적 이해 미흡 오류, 등식의 성질에 대한 오류, 이항에 대한 오류, 계산 착오로 인한 오류, 기호화에 의한 오류로 분류하였으며, 이 중에서 등식의 성질에 대한 오류와 개념적 이해 미흡으로 인한 오류를 많이 범하고 있었다. 학생들이 TI-92를 활용하여 일차방정식의 해를 구할 때, Home Mode에서 Solve 기능을 이용하여 단순히 결과만을 보는 것 보다 Symbolic Math Guide를 이용하여 풀이 과정을 선택하여 대수적 알고리즘을 형성하면서 해를 구하는 것을 선호하였다. 그리고 학생들의 정의적 및 기능적 측면을 고려해야 할 필요성을 느끼게 되었다.

  • PDF

Excel을 활용한 소수의 진법변환 계산에서의 오류 (Flaws in Excel when performing Base Conversion of Decimals)

  • 김태수
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권11호
    • /
    • pp.559-566
    • /
    • 2016
  • 전 세계적으로 널리 상용화된 Excel은 수식작성과 계산이 편리해 기업의 세무계산, 보고서나 학교의 성적관리 및 가계부 등에 광범위하게 활용되고 있는 전산프로그램이다. 그러나 초기부터 계산의 부정확성 및 오류들이 꾸준히 제기되어 왔고, 지속적으로 수정되어 발전하여왔다. 소수의 진법변환 과정은 경우에 따라서는 단순한 계산을 반복적으로 여러 번 해야만 하기에, 이러한 단순작업은 컴퓨터에 의한 계산도구들의 도움을 받기에 적절하다. 이번에 발견된 소수의 진법변환과 같은 단순계산과정에서 Excel의 오류는 쉽게 이해되지 않는다. 유사한 오류가 추가적으로 발견될 가능성은 높다. 이번에 발견된 오류의 유형에 대하여 원인을 파악하고, 빠른 수정을 희망한다.

초등 수학 교재에서의 계산 오류 활용 실태 분석 (Analysis of Korean Elementary Mathematics Textbooks, Workbooks, and Teachers's Guide Books in respect of Using Computational Error Patterns)

  • 이영선;김수미
    • 대한수학교육학회지:학교수학
    • /
    • 제6권4호
    • /
    • pp.345-359
    • /
    • 2004
  • 본 연구는 기존의 계산 오류 연구 결과가 초등수학 지도에 적극 활용되지 않는다는 점에 착안하여, 계산 오류 연구 결과가 최근의 초등 수학 교재에서 어느 정도 반영되고 있는지 그 실태를 파악하고, 더 나아가 미래 교재 개발을 위한 시사점을 도출하고자 하였다. 이를 위해 본 연구에서는 교재의 분석 기준을 마련하고, 이를 토대로 제6차와 7차 교육과정의 수학 교과서, 수학 익힘책, 그리고 교사용 지도서를 계산 오류 활용이라는 관점에서 분석하였다 분석 결과 수학 교과서에서는 제6차와 7차 공통적으로 계산 오류가 활용되지 않았으며, 7차의 경우는 수학 익힘책, 교사용 지도서에서도 그 활용도가 극히 낮은 것으로 나타났다. 마지막으로 분석결과를 토대로 차기 교육과정에서의 수학 교재 개발에 대한 시사점을 간략하게 정리하였다.

  • PDF

수학 문장제 해결과 관련한 ChatGPT의 교수학적 활용 방안 모색 (A study on the didactical application of ChatGPT for mathematical word problem solving)

  • 강윤지
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제38권1호
    • /
    • pp.49-67
    • /
    • 2024
  • 최근 인공지능 언어 모델의 다양한 활용에 대한 관심이 높아지면서 수학교육에서의 교수학적 활용 방안 모색에 대한 필요성이 강조되고 있다. 인공지능 언어 모델은 자연어 처리가 가능하다는 특징으로 인하여 수학 문장제 해결과 관련된 활용이 기대된다. 인공지능 언어 모델 중 하나인 ChatGPT의 성능을 확인하기 위하여 초등학교 교과서에 제시된 문장제를 해결하도록 지시하였으며 풀이 과정 및 오류를 분석하였다. 분석 결과, 인공지능 언어 모델은 81.08%의 정답률을 나타내었으며 문제 이해 오류, 식 수립 오류, 계산 오류 등이 발생하였다. 이러한 문장제 해결 과정 및 오류 유형의 분석을 바탕으로 인공지능 언어 모델의 교수학적 활용 방안과 관련된 시사점을 제안하였다.

해양사고 인적오류 예방을 위한 해심 주제어 분석에 관한 고찰

  • 장은진;강유미;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2016년도 춘계학술대회
    • /
    • pp.196-198
    • /
    • 2016
  • 해양사고 원인의 대부분을 차지하는 인적오류 예방은 해양안전에 가장 중요하며 인적오류는 확률기반의 인적 모델을 구축하여 평가할 수 있다. 확률기반 인적 모델을 구축하기 위해 사건의 원인과 결과 사이에 연계성을 갖고 있는 통계 데이터가 필요하다. 이러한 데이터는 정부 공식통계로서 해양안전심판원에서 제공하는 재결서의 내용 분석을 통해 얻고자 하나, 측정변수가 너무 많아 계산량이 방대하다. 본 연구에서는 재결서 분석서의 원인판단에서 기준이 되는 해양안전심판원의 해양사고조사심판정보포털(이하 해심)에서 제공하는 재결서 내용의 핵심적인 내용으로 구성된 '주제어 '데이터를 활용하여 주제어에 포함된 핵심단어 분석절차를 수립하였다. 이들 단어가 구분형태별로 어떻게 분포된 상태인지 알아보고, 선박사고별로 최적으로 설명할 수 있는 단어 객체수를 검토해보고자 한다. 향후 축소된 차원으로도 해양사고 인적과실의 인과관계 설명이 가능하면, 인적모델의 측정변수를 결정하는 경우 쉽게 타당성을 확인 할 수 있어 해양안전을 위한 중요한 자료로 활용할 수 있다.

  • PDF

설비 오류 유형 구조화를 위한 인공신경망 기반 구절 네트워크 구축 방법 (An Artificial Neural Network Based Phrase Network Construction Method for Structuring Facility Error Types)

  • 노영훈;최은영;최예림
    • 인터넷정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.21-29
    • /
    • 2018
  • 4차 산업혁명 시대의 도래와 함께 스마트 팩토리의 개념이 대두되면서 설비가동률과 생산성에 악영향을 미치는 설비 오류의 발생을 데이터 분석 기법을 통해 예측하고자 하는 노력이 이루어지고 있다. 데이터 분석 기법을 활용하여 설비 오류를 예측하기 위해서는 설비 오류가 발생한 상황과 설비 오류 유형을 명시한 데이터인 설비 오류 이력이 필요하다. 하지만 많은 제조 현장에서는 설비 오류 유형이 정확하게 정의/분류가 되지 않아 설비를 운영하는 작업자가 자신의 경험적 판단에 의거하여 정형화되지 않은 텍스트의 형태로 설비 오류 유형을 작성하고, 이에 따라 데이터 분석 기법의 적용이 어렵다. 따라서 본 논문에서는 수기로 작성된 설비 오류 이력을 활용하여 설비 오류 유형을 파악하고 구조화하기 위한 구절 네트워크 구축 방법을 제안하고자 한다. 구체적으로, 단어를 쓰임새에 따라 분류한 용도 딕셔너리를 활용하여 비정형의 텍스트 데이터로부터 설비 오류 유형을 의미하는 구절을 추출하고, 추출된 구절 간의 유사도를 계산하여 네트워크를 구축한다. 제안하는 방법의 성능을 실제 제조 기업의 설비 오류 이력 데이터를 활용하여 검증하였으며, 본 연구의 결과는 텍스트 데이터에 기반한 설비 오류 유형 구조화와 나아가서는 설비 오류 발생 예측에 이용할 수 있을 것을 기대한다.

세종전자사전을 활용한 한국어 구문분석 (Korean Parsing using Sejong Dictionary)

  • 성열원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2007년도 제19회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.261-268
    • /
    • 2007
  • 본 논문에서는 세종전자사전의 정보를 활용하여 논항 결합의 정확도를 향상시키는 한국어 구문분석 모델을 제안한다. 구문분석 과정에서 노드간의 결합 가능성을 계산할 때, 세종전자사전 동사사전의 격틀 정보, 논항 제약 정보와 명사사전의 의미부류 정보를 활용하여 가산점을 부여하여 사전의 내용과 일치하는 결합이 선호되도록 하였다. 이 과정에서 구조적 오류를 해결할 수 있었고, 결합에 참여하는 동사와 명사의 의미 중의성도 해소할 수 있었다. 평균 13어절 길이의 실험용 문장 50개를 대상으로 실험한 결과, 35% 정도의 오류 감소 효과를 볼 수 있었다. 또한 구문분석 결과 정보를, 전자 사전에 기술된 정보의 완결성을 시험하고 보완하는 데에도 활용하였다.

  • PDF

보로노이 공간분류를 활용한 원격 영상 패턴분류 시스템 (Pattern Classification System for Remote Sensing Data using Voronoi Diagram)

  • 백주현;김홍기
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.335-342
    • /
    • 2001
  • 본 논문은 보로노이 공간분류를 활용하여 원격탐사 영상인식을 위한 다층 신경망 분류기를제안한다. 제안된 다층 신경망 분류기는 보로노이 다각형 영역으로 클래스를 구분하며, 초평면 방정식의 계수를 오류 역전과 학습 초기의 연결 강도, 임계치 그리고 은닉층의 노드 수로 결정한다. 제안된 방법은 오류역전과 학습 알고리즘에서 임의로 정해주던 초기 정보를 사전 분석에 의해 공학적으로 결정함으로써 느린 수렴 속도와 학습실패 등의 단점을 피할 수 있는 장점이 있다. 보로노이 다이어그램에 대한 경계선의 초평면 방정식은 훈련집합의 클래스별 평균값을 구하여 Mathematica 패키지로 계산하였다. 제안된 다층 신경망에 의한 영상분류기의 인식능력을 평가하기 위하여 원격탐사 영상인식에서 자주 활용되는 최소거리 분류 방법과 최대우도 분류 방법으로 처리해서 비교한 결과, 최소거리 분류 방법은 실험화상에 대해 81.4%, 최대우도 부류기에 의한 분류는 87.8%, 제안한 방법은 92.2% 정확성을 가진 분류결과를 나타냈다.

  • PDF

TI-92 계산기를 활용한 이산수학의 이해과정 탐구-「행렬과 그래프」단원을 중심으로- (An Inquiry on the Understanding Process of Discrete Mathematics using TI-92 Calculator - Matrix and Graph-)

  • 강윤수;이보라
    • 한국학교수학회논문집
    • /
    • 제7권2호
    • /
    • pp.81-97
    • /
    • 2004
  • 본 논문은 그래픽 계산기를 활용한 이산수학의 ‘행렬과 그래프’개념의 이해과정에 관한 연구이다. 본 연구의 목적을 위해 우리는 TI-92 계산기를 활용하여 ‘행렬과 그래프’ 개념을 학습해 가는 두 명의 중학생을 조사하였다. 이 과정에서 우리는 켐코더나 녹음기를 활용하여 질적자료를 수집하였으며 이 자료들을 테크놀로지에 관한 학생들의 태도, 용어의 의미 이해, 행렬 연산의 이해 과정, 수학적 의사소통 등으로 범주화하였다. 이로부터 우리는 다음과 같은 결론을 얻었다. 첫째, 학생들은 그래픽 계산기를 활용하여 행렬의 의미와 역할을 그들 스스로 탐구하였으며 계산기는 이 과정에서 훌륭한 학습동반자 역할을 수행하였다. 둘째, 탐구과정에서 학생들이 오류를 범했을 때 그래픽 계산기가 에러메시지를 곧바로 출력함으로써 학생들의 자기주도적 학습을 가능하게 하였다. 셋째, 계산기는 교사와 학생들간, 혹은 학생들 사이의 수학적 의사소통을 강화시키는 역할을 하였다.

  • PDF

Word2Vec 모델을 활용한 한국어 문장 생성 (Generating Korean Sentences Using Word2Vec)

  • 남현규;이영석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF