• Title/Summary/Keyword: 계산 기하학

Search Result 207, Processing Time 0.026 seconds

Study on the Ship Detection Method Using SAR Imagery (SAR 영상을 이용한 선박탐지에 관한 연구)

  • Kwon, Seung-Joon;Shin, Sung-Woong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.131-139
    • /
    • 2009
  • The existing vessel monitoring system using the ground surveillance radar has a difficulty in monitoring ships continuously due to the limited range of detecting ships. For resolving this problem, we carry out a research on ship detection which is to be the core technology of vessel monitoring system for ocean monitoring using SAR imagery. There are two different methods of detecting ships in SAR imagery: detection of the ship target itself and detection of the ship wake. In this paper, we mainly focus on algorithms which detect the ship itself, and also present the accuracy test after extracting positional and directional figures of the ships. After rectifying input SAR imagery using polynomial transformation, we use Wiener filter to remove speckle noises. A labeling technique and morphological filtering in conjunction with Otsu's method are used to automatically detect the ships based on the image processing domain. For ground truth data, information from a radar system is used, which allows assessing the accuracy of the proposed method. The results show that the proposed method has the high potential in automatically detecting the ships and its positional/directional figures in a fast way.

  • PDF

A Range-Free Localization Algorithm for Sensor Networks with a Helicopter-based Mobile Anchor Node (센서 네트워크에서 모바일 앵커 노드(헬기)를 이용한 위치인식 알고리즘)

  • Lee, Byoung-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.750-757
    • /
    • 2011
  • Wireless Sensor Network is composed of a lot of sensor nodes that are densely deployed in a field. So generally this sensor nodes are spreaded using Helicopter or Fixed wing. Each node delivers own location and acquired information to user when it detects specific events. In this paper, we propose localization algorithm without range information in wireless sensor network using helicopter. Helicopter broadcasts periodically beacon signal for sensor nodes. Sensor nodes stored own memory this beacon signal until to find another beacon point(satisfied special condition). This paper develops a localization mechanism using the geometry conjecture(perpendicular bisector of a chord) to know own location. And the simulation results demonstrate that our localization scheme outperforms Centroid, APIT in terms of a higher location accuracy.

A Simplified Finite Element Method for the Ultimate Strengh Analysis of Plates with Initial Imperfections (초기결함을 가진 판의 최종강도해석을 위한 간이 유한요소법)

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.24-38
    • /
    • 1989
  • In this study, an attempt for formulating a new and simplified rectangular finite element having only four corner nodal points is made to analyze the elastic-plastic large deformation behaviour up to the ultimate limit state of plates with initial imperfections. The present finite element contains the geometric nonlinearity caused by both in-plane and out-of-plane large deformation because for very thin plates the influence of the former may not be negligible. Treatment of expanded plastic zone in the plate thickness direction of the element is simplified based upon the concept of plastic node method so that the elastic-plastic stiffness matrix of the element is derived by the simple matrix operation without performing complicated numerical integration. Thus, a considerable saving of the computational efforts is expected. A computer program is also completed based on the present formulation and numerical calculation for some examples is performed so as to verify the accuracy and validity of the program.

  • PDF

Far-Field Sound Field Estimation from Near-Field Sound Field Data Using Boundary Collocation Method ; Decision of Optimum Points of Measurement (경계 배치법(Boundary Collocation Method)에 의한 근거리 음장 자료로부터 원거리 음장의 예측 ; 최적 측정점 개수의 결정)

  • 김원호;윤종락
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 1999
  • This paper describes the far-field estimation using the near-field measurement data. Measurement in far-field region gives us the acoustical characteristics of the source but in general measurement is made in near-field such as acoustic water tank or anechoic chamber, so far-field acoustical characteristics of the source should be predicted from near-field data. In this case, the number of measurement points in the near field which relates to the accuracy of the predicted field and the amount of data processing, should be optimized. Existing papers say that measurement points is proportional to kL and depends on geometry and directivity of the source. But they do not give us any definite criterion for the required number of measurement points. Boundary Collocation Method which is one of the far-field prediction methods, is analyzed based on Helmholtz integral equation and Green function and it has been found that the number of measurement points is optimized as 0.54kL which is about one half of the existing results.

  • PDF

A Study on the Ultimate Strength Analysis of Damaged Tubular Members (손상원통부재(損傷圓筒部材)의 최종강도(最終强度) 해석(解析)에 관한 연구(硏究))

  • Jeom-K.,Paik;Byung-C.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.24-34
    • /
    • 1990
  • In this paper, the formulation of a new simplified finite element is made to analyze the ultimate strength of damaged tubular members subjected to combined axial force and end moment. A damaged tubular member that has the bending deformation and the local dent is modeled by beam elements. Tangent elastic stiffness matrix of a beam element which contains the effect of the geometric nonlinearity is derived by using the updated Lagrangian approach. Here the contribution of the stiffness in the dented area is neglected since its resistance against the external loads is considered to be small. A fully plastic interaction curve of the element under combined loads taking account of the local dent effect is selected as a yielding criterion at each nodal point. Also tangent elasto-plastic stiffness matrix of the element is formulated by plastic node method. Comparison with the present solution and the existing experimental results is made showing that the present method gives quite an accurate solution.

  • PDF

Optimal design of a concave annular array transducer to generate high intensity focused ultrasound (고강도 집속 초음파 발생용 오목한 환상형 배열 트랜스듀서의 최적설계)

  • Choi, Euna;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.452-465
    • /
    • 2016
  • In this study, the structure of a concave annular array transducer was optimized to generate high intensity focused ultrasound for medical therapeutic application. The transducer has a phased array structure composed of several concentric channels that have 40 mm as the radius of curvature. We derived theoretical equations to analyze the sound field of the transducer and verified the validity of the equations by comparing the results calculated by the equations with those from finite element analyses. We also checked the possibility of dynamic focusing at around the geometric focal point. Further, the level of a grating lobe occurring at an unwanted position in the transducer sound field was confirmed to be reducible through the relation between the number of channels and the frequency of the transducer. Hence, the structure of the transducer was optimized to place the main lobe within a specific range from the zenith while systematically reducing the level of the maximum sidelobe including the grating lobe. The designed structure showed the performance better than that targeted at all the focal points.

A Vector-based Azimuth Algorithm using Indoor-Positioning Systems for Mobile Nodes (이동노드의 실내위치파악 시스템을 통한 벡터기반 상대방위각 알고리즘)

  • Son, Joo-Young
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Indoor-positioning systems are useful to various applications. Navigation system is one of the most popular applications, which needs the information of directions of nodes' movements. Specifically the applications should get the information in real-time to properly show the current moving position of a node. In this paper, simple vector-based algorithms are proposed to compute amount and direction of changes of azimuth of mobile nodes' heading directions using existing indoor positioning systems in indoor environments where azimuth sensors do not work properly. Previous algorithms calculate the azimuth changes by too many steps of topology-based formula. The algorithms proposed in this paper get the amount of changes of azimuth by simple formula based on vector, and determine the direction of changes by the sign of value of simple formula based on the previous movement of nodes. The algorithms are much simpler and less error-prone than previous ones, and then they can detect changes in many location-based applications as well. The performance of the algorithms is proved logically and mathematically.

Capacity Estimation Models for Work-zones Under Traffic Signal Influence and the Empirical Validation (신호영향권 하 도로공사구간에서의 용량산정모형 개발과 실증)

  • Shin, Chi-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This paper focuses on the development of analytical models for estimating the changes in saturation flow rates (SFR) at the stop-lines of a signalized intersection due to the existence of nearby work-zones, and thereby calculating the prevailing capacity values for specific lane groups. Major changes were incorporated in the logics of previous models and significant revisions have been made to secure the accuracy and simplicity. Furthermore, much attention was paid to model validation by making comparisons to both extensive simulation results and empirical data from various sites. It was found that SFRs are highly sensitive to the location of work-zones, the distance to each work-zone from the stop-line of a concerned approach, the number of lanes open and closed, and the effective green time. Using such geometric and operating conditions that constitute work-zone environment, the proposed models successfully estimated SFR values with a miniscule margin of error.

Waveform Simulation of Full-Waveform LIDAR (풀웨이브폼 라이다의 반사파형 시뮬레이션)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.9-20
    • /
    • 2010
  • The LIDAR data can be efficiently utilized for automatic reconstruction of 3D models of objects on the terrain and the terrain itself. In this paper, we attempted to generate simulated waveforms of FW (Full-Waveform) LIDAR (LIght Detection And Ranging). We performed the geometric modeling of the sensor and objects, and the radiometric modeling of the waveform intensity. First, we compute the origins and directions of the sub-beams by considering the divergence effects of a laser beam. We then searched for the locations at which the sub-beams intersected with the objects, such as ground, buildings and trees. Finally, we generate the individual waveforms of the reflected sub-beams and the waveform of the entire beam by summing the individual ones. With the experimental results, we confirmed the waveforms were reasonably generated, showing the characteristics of the surfaces the beam interacted with.

Prediction of Resistance Performance for Low-Speed Full Ship using Deep Neural Network (심층신경망을 이용한 저속비대선의 저항성능 추정)

  • TaeWon Park;JangHoon Seo;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1274-1280
    • /
    • 2022
  • The resistance performance evaluation of general ships using computational fluid dynamics requires a lot of time and cost, and various methods are being studied to reduce the time and cost. Existing methods using main particulars or cross sections of ships have limitations in estimating resistance performance that is greatly dependent on the shape of the ship. In this paper, we propose a deep neural network model that can quickly predict the resistance performance of the hull surface by inputting the geometric information of the hullform mesh. The proposed deep neural network model based on Perceiver IO can immediately predict resistance performance, unlike computational fluid dynamics techniques that require calculation in each time step. It shows the result of estimating the resistance performance with an average error of less than 1% in the data set for a 50 K tanker ship, a type of low-speed full ship.