• Title/Summary/Keyword: 계산정확도

Search Result 2,003, Processing Time 0.031 seconds

p-Convergent Transition Element for Analysis of Cracked Laminate Plates with patch Repairs (팻취보강된 균열적층판 해석을 위한 p-수렴 천이요소)

  • Yang, Seung-Ho;Woo, Kwang-Sung;Shin, Young-Sik;Yi, Dong-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.314-317
    • /
    • 2010
  • 본 논문에서는 p-수렴 천이요소의 층별이론을 사용하여 균열을 갖는 적층판의 팻취보강 효과에 대해 알아보았다. 이 모델의 면내 변위는 각 구간별로 연속인 선형변화로 가정하였고, 두께방향으로의 면외 변위는 일정한 상수로 가정하여 적용하였다. 변위장의 정의는 적분형 르장드로 다항식을 적용하였다. 또한 에너지 방출률법과 VCCT 방법을 사용하여 응력확대계수를 산출하였다. 수치적분은 별도의 외삽법 없이 각층별의 절점에서 방생하는 적분 값을 바로 얻을 수 있는 가우스-로바토 적분법을 사용하여 계산하였으며, 수치예제를 통해 제안된 모델의 정확도와 기존의 3차원 고체요소를 사용한 것보다 동일한 정확도를 얻기 위해 휠씬 적은 요소 및 자유도가 사용됨을 알 수 있었다.

  • PDF

A Study on Accuracy Enhancement of Indoor Local Positioning System for Zigbee (ZigBee를 이용한 실내 위치 인식의 정확성 향상에 관한 연구)

  • Kim, In-Kyum;Lee, Ki Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.745-748
    • /
    • 2009
  • 본 논문은 ZigBee 기술을 이용하여 실내 위치 인식 알고리즘을 설계하고 구현하였다. ZigBee의 가장 큰 장점은 RFID, 적외선, 초음파 기술 등과 비교하여 저전력으로 오랜 시간 동안 사용할 수 있으면서도 가격이 저렴하다는 것이다. 본 논문은 ZigBee를 이용한 위치 인식 기술에 RSSI와 삼각 측량법, 그리고 다수의 데이터에서 정확한 RSSI값을 선택하는 알고리즘을 설계하였고, 위치 인식의 정확도를 높이는데 초점을 두었다. RSSI값을 미리 실측하여 Curve Fitting을 이용하여 각각의 고정 AP마다 RSSI와 거리의 관계식을 산출하여 위치 계산에 사용하였다. 또한 실제 위치 인식 시스템을 기존의 삼각 측량법만을 사용하는 방법과 본 논문에서 제안하는 방법을 각각 구현하였다. 또한 모의실험을 통해 실제 모바일 노드의 위치와 측정된 위치의 오차율을 비교하여 성능을 측정하였다. 모의실험을 통해 성능을 비교하여 모바일 노드의 위치 인식 오차율을 줄이고, 정확도를 향상하였다.

  • PDF

An Efficient Method to Combine PatchMatch-Based and Segmentation-Based Dense Depth Maps (패치매치 기반 및 분할 기반 조밀 깊이지도의 효율적인 결합 방법)

  • Hanshin Lim;Jeongil Seo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.161-163
    • /
    • 2022
  • 본 논문에서는 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 효율적인 결합을 통해 기존의 패치매치 기반의 방법들이 낮은 깊이값 추정 정확도를 보인 영역들인 텍스처가 부족한 영역과 기존의 분할 기반 방법들이 깊이값 추정에 한계를 보인 세밀한 영역에서의 깊이값 추정 정확도를 동시에 높이고 고품질의 조밀 깊이지도를 얻는 것을 목표로 한다. 이를 위해 제안한 방법에서는 신뢰지도를 바탕으로 패치매치 기법의 조밀 깊이지도, 조밀 노말지도와 분할 기법의 조밀 깊이지도, 조밀 노말지도의 초기 결합 깊이지도 및 초기 결합 노말지도를 생성한다. 이후 각 픽셀에서 원래 픽셀과 주변 픽셀에서의 깊이값, 노말값들로 업데이트를 위한 후보들을 만든다. 이후 각각의 후보들에 대해서 깊이값, 노말값, 컬러값들을 바탕으로 비용을 계산한다. 이후 가장 최적의 비용을 가지는 후보값으로 각 픽셀의 깊이값과 노말값을 업데이트한다. 이를 통해 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 장점을 합친 결합 조밀 깊이지도를 생성한다.

  • PDF

Noise Robust Baseball Event Detection with Multimodal Information (멀티모달 정보를 이용한 잡음에 강인한 야구 이벤트 시점 검출 방법)

  • Young-Ik Kim;Hyun Jo Jung;Minsoo Na;Younghyun Lee;Joonsoo Lee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.136-138
    • /
    • 2022
  • 스포츠 방송/미디어 데이터에서 특정 이벤트 시점을 효율적으로 검출하는 방법은 정보 검색이나 하이라이트, 요약 등을 위해 중요한 기술이다. 이 논문에서는, 야구 중계 방송 데이터에서 투구에 대한 타격 및 포구 이벤트 시점을 강인하게 검출하는 방법으로, 음향 및 영상 정보를 융합하는 방법에 대해 제안한다. 음향 정보에 기반한 이벤트 검출 방법은 계산이 용이하고 정확도가 높은 반면, 영상 정보의 도움 없이는 모호성을 해결하기 힘든 경우가 많이 발생한다. 특히 야구 중계 데이터의 경우, 투수의 투구 시점에 대한 영상 정보를 활용하여 타격 및 포구 이벤트 검출의 정확도를 보다 향상시킬 수 있다. 이 논문에서는 음향 기반의 딥러닝 이벤트 시점 검출 모델과 영상 기반의 보정 방법을 제안하고, 실제 KBO 야구 중계 방송 데이터에 적용한 사례와 실험 결과에 대해 기술한다.

  • PDF

Development of Multi-Person Pose-Estimation and Tracking Algorithm (다중 사용자 포즈 추정 및 트래킹 알고리즘의 구현)

  • Kim, Seung-Ryeol;Ahn, So-Yoon;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.215-217
    • /
    • 2021
  • 본 논문은 3D 공간에서 사용자를 추출한 뒤, 체적 정보 분석을 통한 3D 스켈레톤(skeleton) 분석 과정을 통해 정확도 높은 다수 사용자의 위치 추적 기술에 대해 연구하였다. 이를 위하여 YOLO(You Only Look Once)를 활용하여 실시간으로 객체를 검출(Real-Time Object Detection)한 뒤 Google의 Mediapipe를 활용해 스켈레톤 추출, 스켈레톤 정규화(normalization)를 통한 스켈레톤의 크기 및 상대적 비율 계산, RGB 영상 스케일링(Scaling) 후 주요 마디 인접 영역의 RGB 색상 정보를 추출하는 방법을 통해 정확도가 개선된 높은 성능의 다중 사용자 추적 기술을 연구하였다.

  • PDF

Speech emotion recognition through time series classification (시계열 데이터 분류를 통한 음성 감정 인식)

  • Kim, Gi-duk;Kim, Mi-sook;Lee, Hack-man
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.11-13
    • /
    • 2021
  • 본 논문에서는 시계열 데이터 분류를 통한 음성 감정 인식을 제안한다. mel-spectrogram을 사용하여 음성파일에서 특징을 뽑아내 다변수 시계열 데이터로 변환한다. 이를 Conv1D, GRU, Transformer를 결합한 딥러닝 모델에 학습시킨다. 위의 딥러닝 모델에 음성 감정 인식 데이터 세트인 TESS, SAVEE, RAVDESS, EmoDB에 적용하여 각각의 데이터 세트에서 기존의 모델 보다 높은 정확도의 음성 감정 분류 결과를 얻을 수 있었다. 정확도는 99.60%, 99.32%, 97.28%, 99.86%를 얻었다.

  • PDF

Realtime Fuel Consumption Prediction using ln-Vehicle Data from OBDII and Regression Methods (OBDII 데이터 기반의 회귀 분석을 통한 실시간 연료 소비량 예측)

  • Yang, Hee-Eun;Kim, Do-Hyun
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.497-499
    • /
    • 2020
  • 자율주행 차량이 많아지고 차량의 ECU가 고도화되면서 정확한 차량의 데이터를 획득하고 분석하여 활용하는 것이 중요해지고 있다. 현재에는 내연 기관 차량의 ECU 데이터를 얻기 위해서 OBDII 포트(규격)에 기반한 CAN동선을 주로 이용하고 있다. 하지만 OBDII 규격을 통해서 연비와 같은 중요한 차량 정보를 얻는 경우, 변환식 (MAF 센서(흡입 공기량 센서)와 공기/연료 비율을 이용)의 오차 범위가 커서 데이터의 정확도가 낮다. 본 연구에서는 머신 러닝 기법 중에 하나인 회귀 기법을 통해서 기존의 계산보디 더 정확한 연비를 구할 수 있는 모델을 개발하였다. 이러한 모델 개발을 통하여 차량의 RAW 데이터를 기반으로 필요한 차량 데이터를 정확하게 구할 수 있게 되었으며 20회가 넘는 실 도로주행을 통해서 본 모델의 정확도를 검증하였다.

Remote Sensing Image Registration using Structure Extraction and Keypoint Filtering (구조물 검출 네트워크 및 특징점 필터링을 이용한 원격 탐사 영상 정합)

  • Sung, Jun-Young;Lee, Woo-Ju;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.300-304
    • /
    • 2020
  • 본 논문에서는 원격 탐사 영상 정합에서 정확도는 유지하면서 특징점 매칭 (Matching) 복잡도를 줄이기 위해 입력 영상을 전처리하는 구조물 검출 네트워크를 이용한 원격 탐사 영상 정합 방법을 제안한다. 영상 정합의 기존 방법은 입력 영상에서 특징점을 추출하고 설명자 (Descriptor)를 생성한다. 본 논문에서 제안하는 방법은 입력 영상에서 특징점 매칭에 영향을 미치는 구조물만 추출하여 새로운 영상을 만들어 특징점을 추출한다. 추출된 특징점은 필터링 (Filtering)을 거쳐 원본 영상에 매핑 (Mapping)되어 설명자를 생성하여 특징점 매칭 속도를 향상시킨다. 또한 구조물 검출 네트워크에서 학습 영상과 시험 영상의 특성의 차이로 생기는 성능 저하 문제를 개선하기 위해 히스토그램 매핑 기법을 이용한다. 아리랑 3 호가 획득한 원격 탐사 영상에 대한 실험을 통해 제안하는 방법은 정확도를 유지하면서 계산 시간을 SURF 보다 87.5%, SIFT 보다 92.6% 감소시킬 수 있다.

  • PDF

Development of mobile service for real-time overseas delivery cargo locations and upcoming arrival notifications (해외 배송 화물 위치 및 도착 예정 알림 모바일 서비스)

  • Kim, In-Jeong;Kim, Jiseon;Park, Sang Uk;Heo, Ye eun
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.1062-1064
    • /
    • 2022
  • 해외로 이동하고 있는 컨테이너 화물의 실시간 위치를 확인하고 기상정보 및 국제 이슈 등을 고려하여 도착 예상 시간을 계산해 화물의 도착 예정시간을 실시간으로 확인할 수 있는 서비스이다. 그동안 선박 추적 시스템은 해외 서비스에 의존해왔으며, 선사에서 자체적으로 제공하는 정보는 정확도가 40%에 미치는 한계가 존재했다. 이러한 문제점을 보완하여, 해당 서비스를 통해 빅데이터 기반의 분석과 향후 프로젝트 운영을 통해 축적될 시스템 상의 데이터와 현장의 데이터를 취합하여 높은 정확도를 이룰 수 있을 것으로 예상한다. 이를 통해 수출 기업들은 안전재고를 감축할 수 있게 되어 보관 관련 물류비용을 절감할 수 있게 될 것이다. 또한 보다 정확한 제조 일정을 수립할 수 있게 되어 과잉 생산을 방지할 수 있음을 기대해볼 수 있다.

Focal Calibration Loss-Based Knowledge Distillation for Image Classification (이미지 분류 문제를 위한 focal calibration loss 기반의 지식증류 기법)

  • Ji-Yeon Kang;Jae-Won Lee;Sang-Min Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.695-697
    • /
    • 2023
  • 최근 몇 년 간 딥러닝 기반 모델의 규모와 복잡성이 증가하면서 강력하고, 높은 정확도가 확보되지만 많은 양의 계산 자원과 메모리가 필요하기 때문에 모바일 장치나 임베디드 시스템과 같은 리소스가 제한된 환경에서의 배포에 제약사항이 생긴다. 복잡한 딥러닝 모델의 배포 및 운영 시 요구되는 고성능 컴퓨터 자원의 문제점을 해결하고자 사전 학습된 대규모 모델로부터 가벼운 모델을 학습시키는 지식증류 기법이 제안되었다. 하지만 현대 딥러닝 기반 모델은 높은 정확도 대비 훈련 데이터에 과적합 되는 과잉 확신(overconfidence) 문제에 대한 대책이 필요하다. 본 논문은 효율적인 경량화를 위한 미리 학습된 모델의 과잉 확신을 방지하고자 초점 손실(focal loss)을 이용한 모델 보정 기법을 언급하며, 다양한 손실 함수 변형에 따라서 지식증류의 성능이 어떻게 변화하는지에 대해 탐구하고자 한다.