• Title/Summary/Keyword: 계산정확도

Search Result 2,003, Processing Time 0.031 seconds

Detection of Cold Water Mass along the East Coast of Korea Using Satellite Sea Surface Temperature Products (인공위성 해수면온도 자료를 이용한 동해 연안 냉수대 탐지 알고리즘 개발)

  • Won-Jun Choi;Chan-Su Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1235-1243
    • /
    • 2023
  • This study proposes the detection algorithm for the cold water mass (CWM) along the eastern coast of the Korean Peninsula using sea surface temperature (SST) data provided by the Korea Institute of Ocean Science and Technology (KIOST). Considering the occurrence and distribution of the CWM, the eastern coast of the Korean Peninsula is classified into 3 regions("Goseong-Uljin", "Samcheok-Guryongpo", "Pohang-Gijang"), and the K-means clustering is first applied to SST field of each region. Three groups, K-means clusters are used to determine CWM through applying a double threshold filter predetermined using the standard deviation and the difference of average SST for the 3 groups. The estimated sea area is judged by the CWM if the standard deviation in the sea area is 0.6℃ or higher and the average water temperature difference is 2℃ or higher. As a result of the CWM detection in 2022, the number of CWM occurrences in "Pohang-Gijang" was the most frequent on 77 days and performance indicators of the confusion matrix were calculated for quantitative evaluation. The accuracy of the three regions was 0.83 or higher, and the F1 score recorded a maximum of 0.95 in "Pohang-Gijang". The detection algorithm proposed in this study has been applied to the KIOST SST system providing a CWM map by email.

Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis (화학 공정 설계 및 분석을 위한 설명 가능한 인공지능 대안 모델)

  • Yuna Ko;Jonggeol Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.542-549
    • /
    • 2023
  • Since the growing interest in surrogate modeling, there has been continuous research aimed at simulating nonlinear chemical processes using data-driven machine learning. However, the opaque nature of machine learning models, which limits their interpretability, poses a challenge for their practical application in industry. Therefore, this study aims to analyze chemical processes using Explainable Artificial Intelligence (XAI), a concept that improves interpretability while ensuring model accuracy. While conventional sensitivity analysis of chemical processes has been limited to calculating and ranking the sensitivity indices of variables, we propose a methodology that utilizes XAI to not only perform global and local sensitivity analysis, but also examine the interactions among variables to gain physical insights from the data. For the ammonia synthesis process, which is the target process of the case study, we set the temperature of the preheater leading to the first reactor and the split ratio of the cold shot to the three reactors as process variables. By integrating Matlab and Aspen Plus, we obtained data on ammonia production and the maximum temperatures of the three reactors while systematically varying the process variables. We then trained tree-based models and performed sensitivity analysis using the SHAP technique, one of the XAI methods, on the most accurate model. The global sensitivity analysis showed that the preheater temperature had the greatest effect, and the local sensitivity analysis provided insights for defining the ranges of process variables to improve productivity and prevent overheating. By constructing alternative models for chemical processes and using XAI for sensitivity analysis, this work contributes to providing both quantitative and qualitative feedback for process optimization.

Development of Sequential Sampling Plan of Bemisia tabaci in Greenhouse Tomatoes (토마토 온실내 담배가루이의 축차표본조사법 개발)

  • SoEun Eom;Taechul Park;Kimoon Son;Jiwon Jeong;Jung-Joon Park
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.299-305
    • /
    • 2023
  • Bemisia tabaci is one of polyphagous insect pests that transmits Tomato Yellow Leaf Curl Virus (TYLCV) and Cassava Brown Streak Disease (CBSD). Insecticides are primarily applied to control B. tabaci, but it has limits due to the development of resistance. As a result, a fixed precision sampling plan was developed for its integrated pest management (IPM). The tomato plants were divided into top (more than 130cm from the ground), middle (70 cm to 100 cm above the ground), and bottom (50 cm or less above the ground) strata, before visual sampling of the larvae of B. tabaci. The spatial distribution analysis was conducted using Taylor's power law coefficients with pooled data of top, middle, bottom strata. Fixed precision sampling plan and control decision-making were developed with precision levels and action threshold recommended from published scientific papers. To assess the validation of the developed sampling plans, independent data not used in the analysis were evaluated using the Resampling Validation for Sampling Plan (RVSP) program.

Study on the Application of Casting Flow Simulation with Cut Cell Method by the Casting process (Cut Cell 방법을 활용한 공정별 주조유동해석 적용 연구)

  • Young-Sim Choi
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.302-309
    • /
    • 2023
  • In general, castings often have complex shapes and significant variations in thickness within a single product, making grid generation for simulations challenging. Casting flows involve multiphase flows, requiring the tracking of the boundary between air and molten metal. Additionally, considerable time is spent calculating pressure fields due to density differences in a numerical analysis. For these reasons, the Cartesian grid system has traditionally been used in mold filling simulations. However, orthogonal grids fail to represent shapes accurately, leading to a momentum loss caused by the stair-like grid patterns on curved and sloped surfaces. This can alter the flow of molten metals and result in incorrect casting process designs. To address this issue, simulations in the Cartesian grid system involve creating a large number of grids to represent shapes more accurately. Alternatively, the Cut Cell method can be applied to address the problems arising from the Cartesian grid system. In this study, analysis results based on the number of grid in the Cartesian grid system for a casting flow analysis were compared with results obtained using the Cut Cell method. Casting flow simulations of actual products during various casting processes were also conducted, and these results were analyzed with and without applying the Cut Cell method.

Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms (다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화)

  • Kichan Sim;Kangsu Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Structural health monitoring for ships and offshore structures is important in various aspects. Ships and offshore structures are continuously exposed to various environmental conditions, such as waves, wind, and currents. In the event of an accident, immense economic losses, environmental pollution, and safety problems can occur, so it is necessary to detect structural damage or defects early. In this study, structural response data of multi-linked floating offshore structures under various wave load conditions was calculated by performing fluid-structure coupled analysis. Furthermore, the order reduction method with distortion base mode was applied to the structures for predicting the structural response by using the results of numerical analysis. The distortion base mode order reduction method can predict the structural response of a desired area with high accuracy, but prediction performance is affected by sensor arrangement. Optimization based on a genetic algorithm was performed to search for optimal sensor arrangement and improve the prediction performance of the distortion base mode-based reduced-order model. Consequently, a sensor arrangement that predicted the structural response with an error of about 84.0% less than the initial sensor arrangement was derived based on the root mean squared error, which is a prediction performance evaluation index. The computational cost was reduced by about 8 times compared to evaluating the prediction performance of reduced-order models for a total of 43,758 sensor arrangement combinations. and the expected performance was overturned to approximately 84.0% based on sensor placement, including the largest square root error.

Application of Point Shearwave Elastography to Breast Ultrasonography: Initial Experience Using "S-Shearwave" in Differential Diagnosis (Point Shearwave Elastography의 유방 초음파에서의 적용: "S-Shearwave"를 이용한 감별진단의 초기경험)

  • Myung Hwan Lee;Eun-Kyung Kim;Eun Ju Lee;Ha Yan Kim;Jung Hyun Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.1
    • /
    • pp.157-165
    • /
    • 2020
  • Purpose To evaluate the optimal measurement location, cut-off value, and diagnostic performance of S-Shearwave in differential diagnosis of breast masses seen on ultrasonography (US). Materials and Methods During the study period, 225 breast masses in 197 women were included. S-Shearwave measurements were made by applying a square region-of-interest automatically generated by the US machine. Shearwave elasticity was measured three times at four different locations of the mass, and the highest shearwave elasticity was used for calculating the optimal cut-off value. Diagnostic performance was evaluated by using the area under the receiving operator characteristic curve (AUC). Results Of the 225 breast masses, 156 (69.3%) were benign and 69 (30.7%) were malignant. Mean S-Shearwave values were significantly higher for malignant masses (108.0 ± 70.0 kPa vs. 43.4 ± 38.3 kPa; p < 0.001). No significant differences were seen among AUC values at different measurement locations. With a cut-off value of 41.9 kPa, S-Shearwave showed 85.7% sensitivity, 63.9% specificity, 70.7% accuracy, and positive and negative predictive values of 51.7% and 90.8%, respectively. The AUCs for US and S-Shearwave did not show significant differences (p = 0.179). Conclusion S-Shearwave shows comparable diagnostic performance to that of grayscale US that can be applied for differential diagnosis of breast masses seen on US.

A Study on the Self-Propulsion CFD Analysis for a Catamaran with Asymmetrical Inside and Outside Hull Form (안팎 형상이 비대칭인 쌍동선의 자항성능 CFD 해석에 관한 연구)

  • Jonghyeon Lee;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.108-117
    • /
    • 2024
  • In this study, simulations based on computational fluid dynamics were performed for self-propulsion performance prediction of a catamaran that has asymmetrical inside and outside hull form and numerous knuckle lines. In the simulations, the Moving Reference Frame (MRF) or Sliding Mesh (SDM) techniques were used, and the rotation angle of the propeller per time step was different to identify the difference using the analysis technique and condition. The propeller rotation angle used in the MRF technique was 1˚ and those used in the SDM technique were 1˚, 5˚, or 10˚. The torque of the propeller was similar in both the techniques; however, the thrust and resistance of the hull were computed lower when the SDM technique was applied than when the MRF technique was applied, and higher as the rotation angle of the propeller per time step in the SDM technique was smaller in the simulations for several revolutions of the propeller to estimate the self-propulsion condition. The revolutions, thrust, and torque of the propeller in the self-propulsion condition obtained using linear interpolation and the delivered power, wake fraction, thrust deduction factor, and revolutions of the propeller obtained using the full-scale prediction method showed the same trend for both the techniques; however, most of the self-propulsion efficiency showed the opposite trend for these techniques. The accuracy of the propeller wake was low in the simulations when the MRF technique was applied, and slight difference existed in the expression of the wake according to the rotation angle of the propeller per time step when the SDM technique was applied.

The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition (다면체영역분할을 이용한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • In this study, a polyhedral domain decomposition method for Smoothed Particle Hydrodynamics (SPH) analysis is introduced. SPH which is one of meshless methods is a numerical analysis method for fluid flow simulation. It can be useful for analyzing fluidic soil or fluid-structure interaction problems. SPH is a particle-based method, where increased particle count generally improves accuracy but diminishes numerical efficiency. To enhance numerical efficiency, parallel processing algorithms are commonly employed with the Cartesian coordinate-based domain decomposition method. However, for parallel analysis of complex geometric shapes or fluidic problems under dynamic boundary conditions, the Cartesian coordinate-based domain decomposition method may not be suitable. The introduced polyhedral domain decomposition technique offers advantages in enhancing parallel efficiency in such problems. It allows partitioning into various forms of 3D polyhedral elements to better fit the problem. Physical properties of SPH particles are calculated using information from neighboring particles within the smoothing length. Methods for sharing particle information physically separable at partitioning and sharing information at cross-points where parallel efficiency might diminish are presented. Through numerical analysis examples, the proposed method's parallel efficiency approached 95% for up to 12 cores. However, as the number of cores is increased, parallel efficiency is decreased due to increased information sharing among cores.

Convolution Neural Network for Prediction of DNA Length and Number of Species (DNA 길이와 혼합 종 개수 예측을 위한 합성곱 신경망)

  • Sunghee Yang;Yeone Kim;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.274-280
    • /
    • 2024
  • Machine learning techniques utilizing neural networks have been employed in various fields such as disease gene discovery and diagnosis, drug development, and prediction of drug-induced liver injury. Disease features can be investigated by molecular information of DNA. In this study, we developed a neural network to predict the length of DNA and the number of DNA species in mixture solution which are representative molecular information of DNA. In order to address the time-consuming limitations of gel electrophoresis as conventional analysis, we analyzed the dynamic data of a microfluidic concentrating device. The dynamic data were reconstructed into a spatiotemporal map, which reduced the computational cost required for training and prediction. We employed a convolutional neural network to enhance the accuracy to analyze the spatiotemporal map. As a result, we successfully performed single DNA length prediction as single-variable regression, simultaneous prediction of multiple DNA lengths as multivariable regression, and prediction of the number of DNA species in mixture as binary classification. Additionally, based on the composition of training data, we proposed a solution to resolve the problem of prediction bias. By utilizing this study, it would be effectively performed that medical diagnosis using optical measurement such as liquid biopsy of cell-free DNA, cancer diagnosis, etc.

Development of QSAR Model Based on the Key Molecular Descriptors Selection and Computational Toxicology for Prediction of Toxicity of PCBs (PCBs 독성 예측을 위한 주요 분자표현자 선택 기법 및 계산독성학 기반 QSAR 모델 개발)

  • Kim, Dongwoo;Lee, Seungchel;Kim, Minjeong;Lee, Eunji;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.621-629
    • /
    • 2016
  • Recently, the researches on quantitative structure activity relationship (QSAR) for describing toxicities or activities of chemicals based on chemical structural characteristics have been widely carried out in order to estimate the toxicity of chemicals in multiuse facilities. Because the toxicity of chemicals are explained by various kinds of molecular descriptors, an important step for QSAR model development is how to select significant molecular descriptors. This research proposes a statistical selection of significant molecular descriptors and a new QSAR model based on partial least square (PLS). The proposed QSAR model is applied to estimate the logarithm of partition coefficients (log P) of 130 polychlorinated biphenyls (PCBs) and lethal concentration ($LC_{50}$) of 14 PCBs, where the prediction accuracies of the proposed QSAR model are compared to a conventional QSAR model provided by OECD QSAR toolbox. For the selection of significant molecular descriptors that have high correlation with molecular descriptors and activity information of the chemicals of interest, correlation coefficient (r) and variable importance of projection (VIP) are applied and then PLS model of the selected molecular descriptors and activity information is used to predict toxicities and activity information of chemicals. In the prediction results of coefficient of regression ($R^2$) and prediction residual error sum of square (PRESS), the proposed QSAR model showed improved prediction performances of log P and $LC_{50}$ by 26% and 91% than the conventional QSAR model, respectively. The proposed QSAR method based on computational toxicology can improve the prediction performance of the toxicities and the activity information of chemicals, which can contribute to the health and environmental risk assessment of toxic chemicals.