• 제목/요약/키워드: 계면조건

검색결과 861건 처리시간 0.027초

Relationship between Interfacial Tension and Solubility of Diesel Fuel in Surfactant Solutions (계면활성제용액-경유 간 계면장력과 용해도 상관관계 연구)

  • Jeong, Seung-Woo;Hur, Jeong-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제35권1호
    • /
    • pp.70-73
    • /
    • 2013
  • Solubility of oil contaminants in surfactant solutions plays an important role in selecting a suitable surfactant type for soil remediation. Solubility measurement procedures consist of making an equilibrium between surfactant solution and oil, solvent extraction using dichloromethane, and condensation for gas chromatography analysis. Solubility measurement requires time consumption and lots of materials. Interfacial tension is the contracting force between two immiscible liquids, surfactant solution and oil, and also closely related to solubility of oil. This study established a relationship between the interfacial tension and solubility of diesel fuel in surfactant solution and suggested a quick method to estimate solubility of oil in a surfactant solution by measuring its interfacial tension. The results of this study showed that the solubility of diesel fuel in surfactant solution was exponentially increased by decreasing the interfacial tension between two immiscible liquids. The solubility of diesel fuel was significantly increased under the interfacial tension conditions below 1 dyne/cm, while the solubility change was not apparent under the interfacial tension conditions beyond 5 dyne/cm. Interfacial tension measurements may allow us to quickly select an efficient surfactant and its concentration for soil remediation.

Intrinsically Extended Moving Least Squares Finite Difference Method for Potential Problems with Interfacial Boundary (계면경계를 갖는 포텐셜 문제 해석을 위한 내적확장된 이동최소제곱 유한차분법)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제22권5호
    • /
    • pp.411-420
    • /
    • 2009
  • This study presents an extended finite difference method based on moving least squares(MLS) method for solving potential problems with interfacial boundary. The approximation constructed from the MLS Taylor polynomial is modified by inserting of wedge functions for the interface modeling. Governing equations are node-wisely discretized without involving element or grid; immersion of interfacial condition into the approximation circumvents numerical difficulties owing to geometrical modeling of interface. Interface modeling introduces no additional unknowns in the system of equations but makes the system overdetermined. So, the numbers of unknowns and equations are equalized by the symmetrization of the stiffness matrix. Increase in computational effort is the trade-off for ease of interface modeling. Numerical results clearly show that the developed numerical scheme sharply describes the wedge behavior as well as jumps and efficiently and accurately solves potential problems with interface.

Surfactant-Induced Suppression of the Thermocapillary Flow in Evaporating Water Droplets (증발하는 물방울의 계면활성제에 의한 열모세관 유동 억제)

  • Yun, Sungchan;Kim, Tae Kwon;Lim, Hee Chang;Kang, Kwan Hyoung;Lim, Geunbae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제37권7호
    • /
    • pp.695-701
    • /
    • 2013
  • The suppression of a thermocapillary flow (Marangoni flow) by a nonionic surfactant is experimentally investigated for evaporating pure water droplets on hydrophobic substrates. The experiment shows that as the initial concentration of the surfactant increases, the velocity and lifetime of the flow monotonically decrease. The result confirms the no-slip boundary condition at a liquid-air interface, which is explained on the basis of the previous model regarding the effect of surfactants on the no-slip condition. Interestingly, at an initial concentration much less than a critical value, it is found that depinning of the contact line occurs during the early stage of evaporation, which is ascribed to a reduction in the contact angle hysteresis owing to the presence of the Marangoni flow.

Trend on Development and Application of High Performance Surfactants for Detergents (세제용 고기능성 계면활성제의 개발 및 응용 동향)

  • Rang, Moon-Jeong
    • Applied Chemistry for Engineering
    • /
    • 제20권2호
    • /
    • pp.126-133
    • /
    • 2009
  • The surfactants applied in household detergents and industrial cleansers should satisfy the requirement of not just the basic function such as emulsification, solubilisation, dispersion, detergency, wetting and foaming, but also the economical efficiency and the safety to human and environment. In the viewpoint of the sustainable development, the surfactants, moreover, have to reduce raw materials and energy consumption and waste disposal when they are being manufactured and also consumed for their purposes. New high-performance surfactants have been extensively studied and developed in order to respond the change in social and economical environment. Noticeable progresses have been achieved so far, which are the significant increase in solubility and surface activity through the minor modification of existing surfactant molecular structure and the synergistic increase in a surface activity shown in the mixed surfactant system of anionic and cationic surfactants. In this review, the important and meaningful progresses achieved recently in technological advance and practical application will be summarized and discussed.

Fabrication of Transparent Conductive Films Using Single-Walled Carbon Nanotubes Dispersed in Aqueous Solutions by Various Surfactants (다양한 계면활성제로 분산된 단일벽 탄소나노튜브 투명 전도성 필름 제조)

  • Kim, Myoung-Su;Goak, Jeung-Choon;Han, Jong-Hun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.152-152
    • /
    • 2008
  • 탄소나노튜브(carbon nanotube) 필름은 낮은 전기저항, 높은 투명도, 우수한 기계적 강도 및 유연성, 열적 안정성 등의 뛰어난 특성을 가지고 있다. 본 연구에서는 다양한 계면활성제로 분산시킨 수용액으로부터 제조된 단일벽 탄소나노튜브(single-walled CNT) 필름의 면저항(sheet resistance) 특성을 비교하였다. 먼저 나노튜브의 분산을 위해 널리 사용되는 계면활성제인 sodium dodecyl sulfate(SDS)를 기준으로 탄소나노튜브의 양, 원심분리 시간, 초음파 세기 및 시간 등의 최적 공정조건을 정한 후 각 계면활성제에 대해 분산을 위한 최적 첨가량을 알아내어 계면활성제 별로 탄소나노튜브 수용액을 제조하였다. 다양한 계면활성제로 분산된 단일벽 탄소나노튜브 수용액을 알루미나 재질의 필터에 정량적으로 vacuum-filtration하여 필름을 만들었다. 이 필름들의 면저항을 측정함으로써 계면 활성제에 따른 전기적 특성의 차이를 관찰하였다. 본 연구에서 사용한 여러 가지 계면활성제 중 sodium dodecylbenze nesulfonate (NaDDBS)를 사용하여 만든 필름이 가장 낮은 면저항을 나타내었으며, 이는 NaDDBS가 단일벽 탄소나노 튜브 다발들을 개개의 튜브로 잘 분산시키기 때문인 것으로 생각된다.

  • PDF

Extraction of Surface-Active Substances from Defatted Rice Bran by Supercritical Carbon Dioxide (초임계 CO2유체 추출법을 이용한 탈지미강 중 표면활성물질 추출의 최적화)

  • Lee, Hyong-Ju;Lee, Eui-Suk;Hong, Soon-Taek
    • Food Engineering Progress
    • /
    • 제15권2호
    • /
    • pp.175-181
    • /
    • 2011
  • By using supercritical carbon dioxide fluid, an attempt was made to extract surface-active substances from defatted rice bran. Extraction was carried out according to D-optimal design and results were analyzed by response surface methodology to establish optimum condition. It was found that pressure, temperature and co-solvent (ethanol) influenced in a different extent on the extraction efficiency (i.e., yield and interfacial tension) of surface-active substances. Among them, co-solvent was found to be a major influencing factor, where maximum yield (2.62%) was observed at the highest content (250 g). In addition, it also affected most on the interfacial tension at the oil-water interface but in this case the lowest interfacial tension value (9.51 mN/m) was found when added lowest (50 g). In conclusion, it was estimated that the optimum extraction condition was to be pressure 350bar, temperature $62^{\circ}C$ and co-solvent content 50 g in this study, where extraction yield was 0.69% and interfacial tension to be 10.1 mN/m.

Dynamic Behavior Study Using Videomicroscopy in Systems Containing Polar Oils and Nonionic Surfactant (극성 오일, 비이온성 계면활성제를 포함한 계에서의 Videomicroscopy를 이용한 동적 거동에 관한 연구)

  • Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • 제8권3호
    • /
    • pp.473-481
    • /
    • 1997
  • Enhanced videomicroscopy was used to observe the dynamic behavior which occurred when water containing pure nonionic surfactant was carefully contacted with equal volumes of polar oils such as oleyl alcohol and oleic acid at various temperatures. A key component of the system is a vertical-stage microscope which provides for stable interfaces by locating the oil above the denser aqueous phase. This arrangement allowed intermediate phases formed at the surface of contact to be clearly observed, as well as any spontaneous emulsification which developed. Contacting experiments with $C_{12}E_5$ as the surfactant and with pure oleyl alcohol and oleic acid soils showed little activity below the cloud point but vigorous activity at higher temperatures including formation of an intermediate lamellar liquid crystalline phase. Diffusion path theory, which allows prediction of spontaneous emulsification resulting from diffusion and of intermediate phase formation during contacting processes, was used to understand the dynamic behavior seen during contacting experiments. Tentative diffusion paths for the contacting experiments with pure oleyl alcohol were presented with the aid of a partial phase diagram of the oleyl alcohol-water-$C_{12}E_5$ system.

  • PDF

Dynamic Behavior Study in Systems Containing Nonpolar Hydrocarbon Oil and C12E5 Nonionic Surfactant (C12E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동 관찰)

  • Bae, Min Jung;Lim, Jong Choo
    • Korean Chemical Engineering Research
    • /
    • 제47권1호
    • /
    • pp.46-53
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed in systems containing $C_{12}E_5$ nonionic surfactant solution and nonpolar hydrocarbon oil. The phase behavior result showed an oil-in-water(O/W) microemulsion(${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water-in-oil(W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a 3 phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop with time were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous surfactant solution were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time were found to increase with an increase in the chain length of a hydrocarbon oil.

Dynamic Behavior Study Using Videomicroscopy in Systems Containing Nonpolar Hydrocarbon Oil and C10E5 Nonionic Surfactant Solution (Videomicroscopy를 이용한 C10E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동에 관한 연구)

  • Bae, Min-Jung;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • 제20권5호
    • /
    • pp.473-478
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed on systems containing $C_{10}E_5$ nonionic surfactant solutions and nonpolar hydrocarbon oils. The phase behavior showed an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water in oil (W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a three-phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time increased with an increase in the chain length of a hydrocarbon oil.

Removal of Volatile Organic Contaminant(toluene) from Specific Depth in Aquifer Using Selective Surfactant-Enhanced Air Sparging (계면활성제와 폭기를 이용한 대수층의 특정깊이에 존재히는 휘발성 유기오염물질 (톨루엔)의 휘발제거)

  • Song, Young-Su;Kwon, Han-Joon;Yang, Su-Kyeong;Kim, Heon-Ki
    • Economic and Environmental Geology
    • /
    • 제43권6호
    • /
    • pp.565-571
    • /
    • 2010
  • An innovative application of surfactant-enhanced air sparging(SEAS) technique was developed in this study. Using a laboratory-scale physical model packed with water-saturated sand, air sparging was implemented to remove water-dissolved toluene that was introduced into a specific depth of the system with finite vertical width prior to sparging. An anionic surfactant(Sodium dodecylbenzene sulfonate) was introduced into the contaminated layer as in dissolved form in the toluene-contaminated solution for SEAS, whereas no surfactant was applied in the control experiment. Due to the suppressed surface tension of water in the surfactant(and toluene)-containing region, the toluene removal rate increased significantly compared to those without surfactant. More than 70% of the dissolved toluene was removed from the contaminated layer for SEAS application while less than 20% of toluene was removed for the experiment without surfactant. Air intrusion into the contaminated layer during sparging was found to be more effective than that without surfactant, enhancing air contact with toluene-contaminated water, which resulted in improved volatilization of contaminant. This new method is expected to open a new option for remediation of VOC(volatile organic compound)-contaminated aquifer.