• Title/Summary/Keyword: 계면에너지

Search Result 638, Processing Time 0.025 seconds

Comparison on Accuracy of Static and Dynamic Contact Angle Methods for Evaluating Interfacial Properties of Composites (복합재료의 계면특성 평가를 위한 접촉각 방법의 정확도 비교)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.87-93
    • /
    • 2022
  • To analyze the interfacial property between the fiber and the matrix, work of adhesion was used generally that was calculated by surface energies. In this paper, it was determined what types of contact angle measurement methods were more accurate between static and dynamic contact angle measurements. 4 types of glass fiber and epoxy resin were used each other to measure the contact angle. The contact angle was measured using two types, static and dynamic contact angle methods, and work of adhesion, Wa was calculated to compare interfacial properties. The interfacial property was evaluated using microdroplet pull-out test. Generally, the interfacial property was proportional to work of adhesion. In the case of static contact angle, however, work of adhesion was not consistent with interfacial property. It is because that dynamic contact angle measurement comparing to static contact angle could delete the error due to microdroplet size to minimize the surface area as well as the meniscus measuring error.

A study of a-Si:H/c-Si interface properties by surface morphology of Si wafer in heterojunction solar cells (실리콘 기판의 표면 형상에 따른 실리콘 이종접합 태양전지의 a-Si:H/c-Si 계면 특성 연구)

  • Kang, Byung-Jun;Tark, Sung-Ju;Kang, Min-Gu;Kim, Chan-Seok;Lee, Jeong-Chul;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.92-92
    • /
    • 2009
  • 실리콘 기판과 비정질 실리콘 박막 사이의 계면특성은 실리콘 이종접합 태양전지의 효율을 높이는데 있어서 중요한 요소이다. 이종접합 태양전지에서는 n형 실리콘 기판 위에 비정질 실리콘 막을 증착시키는데 이 때 비정질 실리콘 막이 증착되면서 (111)면과 (111)면이 만나는 조직화된 피라미드의 골 사이에서 부분적으로 실리콘의 에피층이 성장하게 된다. 이 에피층이 결정질 실리콘 기판과 비정질 실리콘 막 사이의 계면 특성을 떨어뜨려 이종접합 태양전지의 효율이 감소하게 된다. 본 연구에서는 n형 실리콘 기판을 이용한 고효율 실리콘 이종접합 태양전지 제작을 위하여 실리콘 기판의 조직화 상태를 다르게 하여 셀을 제작하였다. 이에 큰 피라미드 형상의 조직화된 기판 표면, 작은 피라미드 형상의 조직화된 기판 표면, 큰 피라미드 형상을 라운딩 시킨 기판 표면, 작은 피라미드 형상을 라운딩 시킨 기판 표면을 제작하여 기판 종류에 따른 이종접합 태양전지를 제작하여 특성을 비교 하였다.

  • PDF

Study on the influence of i/p interfacial properties on the cell performance of flexible nip microcrystalline silicon thin film solar cells (i/p 계면 특성에 따른 nip 플렉서블 미세결정질 실리콘 박막 태양전지의 특성 연구)

  • Jang, Eunseok;Baek, Sanghun;Jang, Byung Yeol;Lee, Jeong Chul;Park, Sang Hyun;Rhee, Young Woo;Cho, Jun-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.128.2-128.2
    • /
    • 2011
  • 스테인레스 스틸 유연기판 위에 플라즈마 화학기상 증착법 (plasma enhanced chemical vapor deposition)을 이용하여 nip 구조의 미세결정질 실리콘 박막 태양전지 (microcrystalline silicon thin film solar cell)를 제조하고 i ${\mu}c$-Si:H광 흡수층과 p ${\mu}c$-Si:H 사이에 i a-Si:H 버퍼 층을 삽입하여 i/p 계면특성을 개선하고 이에 따른 태양전지 성능특성 변화를 조사하였다. ${\mu}c$-Si:H 박막으로 이루어진 i/p 계면에서의 구조적, 전기적 결함은 태양전지 내에서 생성된 캐리어의 재결합과 shunt resistance 감소를 초래하여 개방전압 (open circuit voltage) 및 곡선 인자 (fill factor)를 감소시키는 것으로 알려졌다. 제조된 미세결정질 실리콘 박막 태양전지는 SUS/Ag/ZnO:Al/n ${\mu}c$-Si:H/i ${\mu}c$-Si:H/p ${\mu}c$-Si:H 구조로 제작되었으며 i/p 계면 사이의 i a-Si;H 버퍼층 두께를 변화시키고 이에 따른 태양전지의 특성을 조사하였다. 태양전지의 구조적, 전기적 특성 변화는 Scanning Electron Microscope (SEM), UV-visible-nIR spectrometry, Photo IV와 Dark IV를 통하여 조사하였다.

  • PDF

Theoretical Estimation of Interfacial Tension between Molten Polymers (용융 고분자간의 계면장력에 대한 이론적 예측)

  • Youngie Oh;Joseph D. Andrade;Mu Shik Jhon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.210-216
    • /
    • 1979
  • A simple method to calculate the interfacial tension between two immiscible molten polymers has been developed. The theory is based on the significant structure theory of liquids. The energy of adhesion is expressed as a geometric mean of the cohesion energies multiplied by correction factor $({\Phi}12)$, ${\Delta}E_{12}={\Phi}_{12}\sqrt{{\Delta}E_{11}{\Delta}E_{22^{\circ}}$. In the calculation of ${\Delta}E_{11}\;and\;{\Delta}E_{22}$, a quasilattice of polymer chains has been assumed. It is assured that, besides the dispersion force, the polar force interactions between polymer constituent groups should be considered in the calculation of the interfacial tensions.

  • PDF

Development of Three-dimensional Chemotaxis Model for a Single Crawling Cell, Considering the Interaction between the Cell and Substrate (세포와 흡착면간의 영향을 고려한 흡착형 세포의 3 차원 동적 해석 모델 개발)

  • Song, Ji-Hwan;Kim, Dong-Choul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1355-1360
    • /
    • 2011
  • The interaction between the cell and the substrate is the most prominent feature affecting the migration of a crawling cell. This paper proposes a three-dimensional dynamic model using the diffuse interface description that reveals the effects of the interaction between a single crawling cell and the substrate during chemotactic migration. To illustrate the effects of interaction between the cell and the substrate, we consider the interfacial energy between the coexistent materials. Multiple mechanisms including the interface energy, chemotaxis effect, and diffusion, are addressed by employing a diffuse interface model.

Measurement of Surface Energy and Intrinsic Work of Adhesion Using Johnson-Kendall-Roberts (JKR) Technique (Johnson-Kendall-Roberts (JKR) 기법을 이용한 표면 에너지 및 고유접착에너지 측정)

  • Lee, Dae Ho;Lee, Dong Yun;Cho, Kilwon
    • Journal of Adhesion and Interface
    • /
    • v.5 no.3
    • /
    • pp.18-22
    • /
    • 2004
  • By using JKR technique, the surface energy of a solid material and the intrinsic work of adhesion between two materials were determined. JKR technique is based on the contact mechanics, and is now being accepted as a new method which can overcome the demerits of the existing test methods such as contact angle measurement and other adhesion test. In this study, the surface energy of polydimethylsiloxane (PDMS) is measured by JKR method and the experimental results and the applicability of JKR apparatus were discussed.

  • PDF

A Study of Kirkendall Void Formation and Impact Reliability at the Electroplated Cu/Sn-3.5Ag Solder Joint (전해도금 Cu와 Sn-3.5Ag 솔더 접합부의 Kirkendall void 형성과 충격 신뢰성에 관한 연구)

  • Kim, Jong-Yeon;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • A noticeable amount of Kirkendall voids formed at the Sn-3.5Ag solder joint with electroplated Cu, and that became even more significant when an additive was added to Cu electroplating bath. With SPS, a large amount of voids formed at the $Cu/Cu_3Sn$ interface of the solder joint during thermal aging at $150^{\circ}C$. The in-situ AES analysis of fractured joints revealed S segregation on the void surface. Only Cu, Sn, and S peaks were detected at the fractured $Cu/Cu_3Sn$ interfaces, and the S peak decreased rapidly with AES depth profiling. The segregation of S at the $Cu/Cu_3Sn$ interface lowered interface energy and thereby reduced the free energy barrier for the Kirkendall void nucleation. The drop impact test revealed that the electrodeposited Cu film with SPS degraded drastically with aging time. Fracture occurred at the $Cu/Cu_3Sn$ interface where a lot of voids existed. Therefore, voids occupied at the $Cu/Cu_3Sn$ interface are shown to seriously degrade drop reliability of solder joints.

  • PDF

Extraction of Average Interface Trap Density using Capacitance-Voltage Characteristic at SiGe p-FinFET and Verification using Terman's Method (SiGe p-FinFET의 C-V 특성을 이용한 평균 계면 결함 밀도 추출과 Terman의 방법을 이용한 검증)

  • Kim, Hyunsoo;Seo, Youngsoo;Shin, Hyungcheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.56-61
    • /
    • 2015
  • Ideal and stretch-out C-V curve were shown at high frequency using SiGe p-FinFET simulation. Average interface trap density can be extracted by the difference of voltage axis on ideal and stretch-out C-V curve. Also, interface trap density(Dit) was extracted by Terman's method that uses the same stretch-out of C-V curve with interface trap characteristic, and average interface trap density was calculated at same energy level. Comparing the average interface trap density, which was found by method using difference of voltage, with Terman's method, it was verified that the two methods almost had the same average interface trap density.

Study on the Intermetallic Compound Growth and Interfacial Adhesion Energy of Cu Pillar Bump (Cu pillar 범프의 금속간화합물 성장과 계면접착에너지에 관한 연구)

  • Lim, Gi-Tae;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.17-24
    • /
    • 2008
  • Thermal annealing and electromigration test were performed at $150^{\circ}C$ and $150^{\circ}C,\;5{\times}10^4\;A/cm^2$ conditions, respectively, in order to compare the growth kinetics of intermetallic compound(IMC) in Cu pillar bump. The quantitative interfacial adhesion energy with annealing was measured by using four-point bending strength test in order to assess the effect of IMC growth on the mechanical reliability of Cu pillar bump. Only $Cu_6Sn_5$ was observed in the Cu pillar/Sn interface after reflow. However, $Cu_3Sn$ formed and grew at Cu pillar/$Cu_6Sn_5$ interface with increasing annealing and stressing time. The growth kinetics of total($Cu_6Sn_5+Cu_3Sn$) IMC changed when all Sn phases in Cu pillar bump were exhausted. The complete consumption time of Sn phase in electromigration condition was faster than that in annealing condition. The quantitative interfacial adhesion energy after 24h at $180^{\circ}C$ was $0.28J/m^2$ while it was $3.37J/m^2$ before annealing. Therefore, the growth of IMC seem to strongly affect the mechanical reliability of Cu pillar bump.

  • PDF

Interfacial Adhesion Energy of Ni-P Electroless-plating Contact for Buried Contact Silicon Solar Cell using 4-point Bending Test System (4점굽힘시험법을 이용한 함몰전극형 Si 태양전지의 무전해 Ni-P 전극 계면 접착력 평가)

  • Kim, Jeong-Kyu;Lee, Eun-Kyung;Kim, Mi-Sung;Lim, Jae-Hong;Lee, Kyu-Hwan;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to develop electroless-plated Nickel Phosphate (Ni-P) as a contact material for high efficient low-cost silicon solar cells, we evaluated the effect of ambient thermal annealing on the degradation behavior of interfacial adhesion energy between electroless-plated Ni-P and silicon solar cell wafers by applying 4-point bending test method. Measured interfacial adhesion energies decreased from 14.83 to 10.83 J/$m^2$ after annealing at 300 and $600^{\circ}C$, respectively. The X-ray photoelectron spectroscopy analysis suggested that the bonding interface was degraded by environmental residual oxygen, in which the oxidation inhibit the stable formation of Ni silicide phase between electroless-plated Ni-P and silicon interface.