• Title/Summary/Keyword: 계단 응답

Search Result 85, Processing Time 0.023 seconds

A Study on the Step Response Model Development of a Dynamic Matrix Control(DMC) For Boiler-Turbine Systems in a Fossil Power Plant (화력발전 보일러-터빈 시스템을 위한 Dynamic Matrix Control(DMC)의 계단응답모델 선정에 관한 연구)

  • Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.125-133
    • /
    • 2006
  • This paper presents comparison results of Step Response Model of Dynamic Matrix Control(DMC) for a drum-type boiler-turbine system of a fossil power plant. Two possible kinds of step response models are investigated in designing the DMC, one is developed with the linearization of theoretical model and the other is developed with the process step-test data. Then, the control performances of each model-based DMC are simulated and evaluated. It is observed that the simulation results with the step-response model based on the test data show satisfactory results, while the linearized model is not suitable for the control of boiler-turbine system.

A Study on the First Order Plus Time Delay Model Identification from Noisy Step Responses (노이즈가 있는 계단응답으로부터 일차시간지연모델 확인에 관한 연구)

  • Ju, Seungmin;Kim, Sung Jin;Byeon, Jeonguk;Chun, Daewoong;Sung, Su Whan;Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.949-957
    • /
    • 2008
  • Estimating the first order plus time delay model on the basis of the step responses has been widely used in industry for the tuning of PID controllers. Even though various model identification methods from simple graphical approaches to complicated approaches based on least squares method have been proposed, simple approaches to incorporate noisy step responses are rarely available. In this research, we will compare and analyze recent approaches using the integrals of the step responses and develop an improved identification method to incorporate real situations more effectively.

Experimental Test Time Reduction Method for Step Responses Using the Time-Optimal Control Technique (시간최적제어 기법을 이용한 계단응답 실험시간 단축 방법)

  • Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.190-196
    • /
    • 2020
  • The step to obtain a process dynamic model through process experiments is very important because it needs times and expenditures. Step response method is one of the standard methods to have long been used for understanding process dynamics, obtaining dynamical models and designing control systems. For the step response, it is usually required to measure process output for a step input change in the open-loop manner. Its disadvantage criticized is the long open-loop operation. For this, a method based on the time-optimal control technique to minimize the test time for obtaining the step response has been recently presented. However, the method requires iterative computations for the minimization of test times. Here, a method where iterative computations are not required is proposed. Simulation results are presented to show that test times to obtain step responses are reduced considerably and an autotuning method based on the proposed method is compared with the relay feedback autotuning method accepted widely for the autotuning of controllers.

Fuzzy Modelling and Fuzzy Controller Design with Step Input Responses and GA for Nonlinear Systems (비선형 시스템의 계단 입력 응답과 GA를 이용한 퍼지 모델링과 퍼지 제어기 설계)

  • Lee, Wonchang;Kang, Geuntaek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.50-58
    • /
    • 2017
  • For nonlinear control system design, there are many studies based on TSK fuzzy model. However, TSK fuzzy modelling needs nonlinear dynamic equations of the object system or a data set fully distributed in input-output space. This paper proposes an modelling technique using only step input response data. The technique uses also the genetic algorithm. The object systems in this paper are nonlinear to control input variable or output variable. In the case of nonlinear to control input, response data obtained with several step input values are used. In the case of nonlinear to output, step input response data and zero input response data are used. This paper also presents a fuzzy controller design technique from TSK fuzzy model. The effectiveness of the proposed techniques is verified with numerical examples.

Speed Control of Permanent Magnet Synchronous Motor using Limited Step Response Characteristics (한계계단 응답특성을 이용한 영구자석형 동기전동기 속도제어)

  • 전인효;최중경;박승엽
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.295-302
    • /
    • 1998
  • In this paper, a new auto-tuning PI controller for the speed servo system of a PMSM is designed by using limited step response characteristics. The method is proposed that gets information about auto-tuning of PI regulator by the injection of step input, called limited input, during a transient response time of control. System parameter estimation and speed control could be continuously executed. This means that in despite of system uncertainty the system information obtained by limited input can be continuously applied to the PI regulator. We demonstrate the effectiveness of the proposed auto-tuning algorithm through simulation and experiment result of the speed control for a PMSM having monotone increasing step response.

  • PDF

A Study on Interpolated Step Response Model of Dynamic Matrix Control(DMC) for a Boiler-Turbine System of Fossil Power Plant (계단 응답 모델의 보간을 이용한 화력발전 보일러-터빈 시스템의 동역학 행렬제어(DMC)에 관한 연구)

  • Moon, Un-Chul;Oh, Seok-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.109-115
    • /
    • 2008
  • This paper proposes an adaptive Dynamic Matrix Control (DMC) and its application to boiler-turbine system In a conventional DMC, object system is described as a Step Response Model (SRM). However, a nonlinear system is not effectively described as a single SRM. In this paper, nine SRMs at various operating points are prepared. On-line interpolation is performed at every sampling step to find the suitable SRM. Therefore, the proposed adaptive DMC can consider the nonlinearity of boiler-turbine system. The simulation results show satisfactory results with a wide range operation of the boiler-turbine system.

Single Step Response Based Method for the Simple Identification of Wiener-type Nonlinear Process (단일 계단 응답에 근거한 Wiener형 비선형 공정의 간편한 모델 확인 방법)

  • Sanghun Lim;Jea Pil Heo;Su Whan Sung;Jietae Lee;Friedrich Y. Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • The Wiener-type nonlinear model where a static nonlinear block follows a dynamic linear block is widely used to describe the dynamics of chemical processes. A long process excitation step is typically needed to identify this Wiener-type nonlinear model with two blocks. In order to cope with this disadvantage, an identification method for the Wiener-type nonlinear model that uses only a single-step response is proposed here. The proposed method estimates the response of the dynamic linear sub-block from the initial part of the step response, and then the static nonlinear sub-block is identified. Because the only single-step response is used to identify the Wiener-type nonlinear model, there is great benefit in time and cost for obtaining process response. The performance of the proposed identification method with the single-step response is verified through a representative Wiener-type nonlinear process, a pH titration process, and a liquid level system.

Formula for Equivalent Impulsive Force to Predict Vibrational Response of High-frequency Staircases (고진동수 계단의 진동응답 산정을 위한 등가임펄스 산정식 제안)

  • Kim, Na Eun;Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.181-193
    • /
    • 2015
  • High-frequency staircases are widely used nowadays to meet aesthetics and functionality needed in modern architecture. Unfortunately, no design guide is available in domestic practice to predict response or evaluate the vibration performance of high-frequency staircases. SCI-P354 published by the Steel Construction Institute of UK provides the formula for effective impulsive force. However, this formula was shown to overestimate the response of high-frequency staircases excited by fast ascending and descending over 2.2Hz pace frequency because it was developed based on the walking test in a slow pace frequency. This study proposes a semi-analytical formula to predict the response of stiff staircases based on analytical and experimental studies of response acceleration for various walking frequencies covering 1.4~4.5Hz.

Boiler-Turbine System Control Using Interpolative Step Response Model Based DMC (계단응답의 내삽기법을 이용한 DMC의 보일러-터빈 시스템 적용)

  • Choi, Hyung-Wook;Moon, Un-Chul;Lee, Seung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.246-248
    • /
    • 2005
  • 본 연구에서는 화력발전의 보일러-터빈 시스템에 DMC(Dynamic Matrix Control) 기법을 적용한다. 고정된 동작점 모델들 간의 내삽(Interpolation)을 이용하여 실시간으로 계단응답모델을 계산 및 개선하고 이를 기반으로 제어를 실행한다. 제시된 제어 기법은 화력발전의 보일러-터빈 시스템을 대상으로 한 모의실험을 통하여 그 효용성을 나타낸다.

  • PDF

Comparative Study on Classical Control and Modern Control via Analysis of Circuit-based Time Response (회로망 기반의 시간응답 해석에 따른 고전제어와 현대제어의 비교 연구)

  • Min, Yong-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.575-584
    • /
    • 2017
  • It is suggested the circuit network to analyze the time response of control system. And it is analyzed the interrelation for classical control and modern control by the transfer function and the state equation. Without complicated integration of state transition equation, it is suggested to possible time response by combining the state transition matrix and the transfer function. A source program is coded to display the time response according to the unit-step and the sinusoidal input. Transient response is analyzed in the unit-step input and phase difference between current and voltage is analyzed in sinusoidal input. As writing the suggested contents in transient response or state-space analysis, it is improved the understanding for control engineering and ability for system design.