• Title/Summary/Keyword: 계기착륙시스템

Search Result 12, Processing Time 0.019 seconds

Guidance Laws for Aircraft Automatic Landing (항공기 자동착륙 유도 법칙에 관한 연구)

  • Min, Byoung-Mun;No, Tae-Soo;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.41-47
    • /
    • 2002
  • In this paper, a guidance law applicable to aircraft automatic landing is proposed and its performance is compared with the conventional ILS-type landing approach. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability are effectively combined to obtain the landing guidance law. The new landing guidance law is integrated into the existing controller and is applied to the landing approach and flare phases of landing procedure. Numerical simulation results show that the new landing guidance law is a viable alternative to the conventional strategies that directly control the longitudinal deviation or altitude.

Application of GNSS Non-Precision and Precision Approaches to a Circle-to-Land Approach Airport (선회착륙공항에서의 GNSS 비정밀접근 및 정밀접근 적용 연구)

  • Kim, Y.M.;Kang, J.Y.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.3
    • /
    • pp.65-85
    • /
    • 2004
  • Circling to land is a relatively dangerous maneuver. It contains the worst elements of IFR flight. There is a minimum obstruction clearance, a limited space in which to maneuver, an absence of visual reference, and trying to keep the runway in sight while preparing to land. At night it is quite a bit more than dangerous. The required continuous turn in marginal conditions that keeps the airport in sight is hazardous. Therefore, this paper proposes an application of GNSS to circling approach to reduce or remove chances of accidents which may occur under such unfavorable flight conditions. The study reviews relevant documents published by ICAO and FAA and provides scenarios for non-precision and precision approaches and circling approach based on the GNSS for Kimhae airport. Also requirements for the ground facility design are studied and provided.

  • PDF

A study on the modulation method of Instrument Landing System (계기착륙방식(ILS)의 변조방식에 관한 고찰)

  • Yoon, Seok-Min;Cho, Eui-Joo;Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.3
    • /
    • pp.143-149
    • /
    • 2007
  • From the announcement which sees discusses about the spatial modulation which is a basic principle of the induction signal which the instrument landing system provides to the aircraft with instrument landing system, depth made be and became the help which makes understand and character did. Explained the fundamental notions of spatial modulation with precedence, the signal which space is modulated with this together influenced to the aircraft receiver and the azimuth and angle of glide were indicated and until with the principle of operation of the aircraft receiver and the process which is general DDM(difference in depth of modulation) and they related they explained.

  • PDF

Design of Digital Transmitter and Receiver Modules in ILS (항공 계기착륙 디지털 송수신 모듈 설계)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.264-271
    • /
    • 2011
  • ILS(Instrument Landing System) is the international standard system for approach and landing guidance. ILS was adopted by ICAO(International Civil Aviation Organization) in 1947 and is currently being used in commercial systems. To design the digital transmitter and receiver modules that can be mounted in the integrated ILS, we propose the digital design methods of digital double AM modulator and demodulator using FPGA chip, DDS(Direct Digital Synthesizer) for generation of sampling clock, demodulator of DDC(Digital Down Converter) structure, and spectrum analyzer using DSP chip. We demonstrate the efficiency of the proposed design method through experiments using developed transmitter and receiver modules. This system can be used as a high-performance commercial system.

Comparison of ILS and GBAS Through Flight Test in Taean Aerodrome and Kimpo Airport (태안 비행장과 김포공항 비행시험을 통한 ILS와 GBAS 비교)

  • Koo, Bon-Soo;Kim, Woo-Ri-Ul;Ju, Yo-Han;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.192-198
    • /
    • 2015
  • Since instrument landing system currently operating in most airports is operating in single-pass, it is not possible to accommodate a large number of aircraft. A satellite navigation system GBAS using a GNSS has been developed to solve these limitation when air traffic increases. GBAS is better than the ILS in position accuracy and capable of landing through multiple paths rather than a single path, the aircraft can perform varied landing procedures. In this paper, after we established a virtual ILS procedures at Taean Airfield in which ILS installation is impossible due to environmental requirements and airspace restrictions, flight test was performed by Cessna Skyhawk 172 to compare the virtual ILS procedures and curved approach procedure and the advantage of curved approach was confirmed.

Consideration on Taean Airport Curved Approach Using the Simulator (시뮬레이터를 이용한 태안비행장 Curved Approach에 대한 고찰)

  • Koo, Bon-Soo;Jun, Hyang-Sig;Jung, Myeong-Sook;Park, Soo-Bog;Hong, Seung-Beom;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.288-295
    • /
    • 2014
  • Current ILS is difficult for the many aircraft to access to the system at the same time because of it's system. And the equipments should be installed at the direction of every runway. Also, There is limitation that landing procedures must be have of only ILS single course when the aircraft land on the ground. hereupon, The more air traffic exist, the longer delay time of flight be. GBAS using the GNSS has been developed to overcome those limitations. Before flight test in Teean airport, this paper compares the taean approach procedure and curved approach procedure by using the simulator. Comparison study shows that curved approach procedure takes less flight time, low fuel consumpsion and make it possible to avoid noise airspace more than original procedure.

Development of Inspection System for NAVAID Using Drone (드론을 이용한 항행안전시설 점검체계 개발)

  • Lee, Young-Gil;Ju, Hyo-Geun;Kwon, Dal-Won;Park, Sung-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.110-115
    • /
    • 2018
  • This paper introduces Korea Airport Corporation's own research and development contents and plans for navigation aids check using drone which is actively research and developed mainly in advanced countries. The hardware, algorithm, operating program of the drone system, the drone flight trajectory setting, and real-time measurement results were analyzed and verified. By securing domestic technology for the latest technology utilizing drone, we plan to promote more thorough aviation safety and advanced technology in related field and commercialized it in domestic and overseas.

GBAS Flight Testing and Performance Assessment using Flight Inspection Aircraft at Gimpo International Airport (비행검사용 항공기를 이용한 김포국제공항 GBAS 비행시험 및 성능평가)

  • Jeong, Myeong-Sook;Bae, Joongwon;Jun, Hyang-Sig;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2015
  • Ground Based Augmentation System(GBAS) is a system that offers an aircraft within 23 NM radius from the airport precision positioning service and precision approach service using the concept of Differential Global Positioning System(DGPS). After GBAS ground equipment installing at the airport, functionalities and performances of GBAS should be verified through the GBAS ground and flight testing. This paper describes the methods and results for GBAS flight test using the flight inspection aircraft at Gimpo International Airport. From the test results, we confirmed that the VDB data was received without misleading within the VDB coverage of Gimpo International Airport, and VDB field strength, protection level, and course alignment accuracy met the evaluation's criteria.

A Study on the Improvement of Domestic Navigation Safety System: Focused on the Implementation of Korea Augmentation Satellite System (국내 항행안전시스템의 개선에 관한 연구: 한국형 정밀위성항법 보강시스템의 구축을 중심으로)

  • Kim, Yeong-Pil;Hwang, Kyung Tae
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.221-230
    • /
    • 2021
  • The study attempts to suggest potential problem and solutions expected in the process of implementing KASS, which is currently under development to improve the domestic navigation safety system, and to summarize improvement effects of domestic navigation safety system anticipated by the implementation of KASS. Challenges expected in the process of implementing KASS exists in four aspects: emotional, technical, cost, safety aspects. When KASS is implemented and operates, various benefits can be realized. Benefits include cost savings by not using navigation safety systems during takeoff and landing; reduction of flight delays and cancellations by removing airway congestion; increase of aircraft accommodation capacity; reduction of carbon emissions; preparation for future aviation demands and improvement of air transportation safety; and reduction of flight accidents. In conclusion, it is expected to enter into an era of more intense competition due to increased aviation demands. In order to survive in this competitive environment, early introduction of KASS is indispensable. Analysis results of this study are expected to provide reference information for academic research in this area. A possible future research topic include a study predicting the changes in the navigation safety systems introduced by KASS and proposing practical and useful ways to respond the changes.