• Title/Summary/Keyword: 경희토류

Search Result 66, Processing Time 0.03 seconds

동위원소희석법과 열이온화 질량분석기에 의한 화강암질 대수층내 지하수의 희토류원소 분포도 및 그 의의

  • 이승구;김건한;김용제;성낙훈;아키마사마스다
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.59-62
    • /
    • 2003
  • 동위원소희석법에 의한 열이온화 질량분석법 (ID-TIMS)을 이용하여 지하수내 희토류원소의 함량을 측정하였다. 희토류원소의 분리에는 철공침법과 양이온교환수지에 의한 컬름분리법을 이용하였다. 경희토류(La-Eu)와 Gd, Dy, Er의 경우 수-수십 ppt의 수준에서 1%이내의 오차범위를 측정되어졌으며, 중희토류 중 Yb와 Lu은 정확도가 다소 떨어진 10% 전후에서 측정되었다. 지하수내 함량을 운석으로 규격화한 결과, 경희토류가 부화되었고 중희토류는 결핍되었으며 Eu의 이상은 거의 존재하지 않는다. 특히 경희토류에서는 M-type의 테트라드효과, 중희토류에서는 W-type의 테트라드효과가 관찰되었다. 이는 희토류원소의 수화수와 밀접한 관련이 있는 것으로 사료된다.

  • PDF

Separation of Light Rare Earth Elements by Solvent Extraction with a Mixture of Cationic and Tertiary Amine (양이온 추출제와 아민의 혼합추출제에 의한 경희토류금속의 분리)

  • Lee, Man-Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.3-10
    • /
    • 2017
  • Rare earth elements with high purity are demanded for the manufacture of advanced materials. Light rare earth elements are contained in domestic monazite and Ni-MH batteries. In this paper, solvent extraction to separate the light rare earth elements from hydrochloric acid leaching solutions of these resources was discussed. A mixture of cationic and tertiary amine shows synergistic effect on the extraction of LREEs and the extent of pH decrease during extraction is reduced. The effect of solution pH on the extraction and synergism was reviewed. Acquisition of the operation data with mixer-settler on the separation of LREEs by this mixture is necessary to develop a process.

한강 수계에서의 희토류원소 분포도의 유역별/계절별 분포도 변화

  • Lee Seung-Gu;Lee Gwang-Sik;Lee Dong-Ho;Kim Yong-Je
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.263-265
    • /
    • 2006
  • 희토류원소 분포도를 이용하여 하천본류의 화학조성에 미치는 각 지류 및 주변 암석들의 영향을 조사하기 위해 한강본류, 남한강, 북한강의 상류 및 하류에서 하천수를 계절별로 채취하여 분석하였다. 한강수내 희토류원소 자료를 PAAS (Post Archean Australian Shale)로 규격화한 분포도 특성은 다음과 같이 요약된다. 첫째, 한강의 모든 물시료는 Eu의 정(+)의 이상과 Ce의 부(-)의 이상을 갖고 있다. 둘째 절대농도에 있어서 하기에 채취된 모든 한강 시료는 다른 절기의 시료들보다. 함량이 높다. 셋째로 전반적으로 중희토류(HREE)가 경희토류(LREE)보다. 부화되어 있다. Eu의 이상을 가지고 비교해 볼 때, 한강 본류는 남한강쪽보다는 북한강쪽의 영향을 더 많이 받는 것으로 나타났다. 본 연구결과, 하천의 본류에 보다. 많은 영향을 주는 지류를 판단함에 있어서 희토류원소의 분포도자 유용하게 활용될 수 있음을 확인할 수 있었다.

  • PDF

Solvent Extraction of Light (Pr, Nd) and Medium (Tb, Dy) Rare Earth Elements with PC88A of Rare Earth Chloride Solution from Waste Permanent Magnet (폐 영구자석으로부터 회수한 염화희토류용액에서 PC88A를 이용한 경희토류(Pr, Nd)/중희토류(Tb, Dy) 용매추출)

  • Jeon, Su-Byung;Son, InJoon;Lim, Byung-Chul;Kim, Jeong-Mo;Kim, Yeon-Jin;Ha, Tae-Gyu;Yoon, Ho-Sung;Kim, Chul-Joo;Chung, Kyeong-Woo
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • Solvent extraction behavior of light rare earth elements (Pr, Nd) and medium rare erath elements (Tb, Dy) in the HCl-PC88A-kerosene extraction system was investigated in order to separate high-purity light rare earths (Pr, Nd) and medium rare earths (Tb, Dy) in the mixed rare earth chloride solution. In the batch test step, it was confirmed that the separation efficiency was good when the extractant concentration (PC88A) was 0.5 M, the equilibrium pH after extraction was 0.8 to 1.0 (initial pH 1.3 of the feed), the concentrations of hydrochloric acid in scrubbing solution was set as 0.1 M, the concentrations of hydrochloric acid in stripping solution was set as 2.0 M or more. Based on the experimental data obtained from the batch test, the mixer-settler was composed as follows; 4 stages of extraction, 8 stages of scrubbing, 4 stages of stripping, and 3 stages of pickling organic solution. The Mixer-settler was operated for 180 hours, and the operating conditions were continuously adjusted to obtain the high-purity light/medium rare earths. Finally, the purity of light (Pr, Nd) and medium rare earth elements (Tb, Dy) was reached as 3 N class.

Geochemical Implication of Rare Earth Element from Yellow sand (Asian Dust) at Daejeon Area, Korea: A Preliminary Study for Clarifying Source Area of Yellow Sand (대전지역 황사(아시아 먼지)내 희토류원소 분포도의 지구화학적 특성-근원지 규명을 위한 초기연구)

  • Lee, Seung-Gu;Youm, Seung-Jun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2008
  • A geochemical technique based on rare earth element geochemistry was used to clarity the source of the Asian dust (Yellow sand) in the Daejeon area. The Asian dusts were collected 4 times during 31th March- 2nd April and 25th May-27th May 2007. The Yellow sand shows PAAS (Post Archean Australian Shale)-normalized REE pattern of the flattened LREE and slightly depleted LREE without Eu anomaly, whereas the Daejeon soil has slightly enriched LREE and depleted HREE with negative Eu anomaly. Our results show that REE patterns of the Asian dust are LREE-flattened similar to those of the sediment from the south-eastern part of Ordos desert. This suggests that Asian dust in the Daejeon area might be derived from the south-eastern part of Ordos desert.

우리나라 고온성 온천수에 함유된 희토류원소 존재도의 지구화학적 특성

  • 이승구;김통권;이진수;송윤호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.410-412
    • /
    • 2004
  • 한반도남부에 분포하는 중생대의 화강암류는 경기육괴지역을 중심으로 분포하는 쥬라기의 대보화강암류와 옥천대 이남지역에 주로 분포하는 백악기의 불국사 화강암류로 크게 분류할 수가 있다. 우리나라의 4$0^{\circ}C$ 이상의 고온성 온천수는, 이암층으로 덮여있는 포항지역을 제외하고는 대부분이 상기의 화강암류 지역에 분포하는 특성을 지닌다. 이 논문에서는 우리나라의 고온성 온천수의 지구화학적특성, 특히 희토류원소의 분포특성을 화강암류의 분포지역과 비교하여 고찰해보고자 하였다. 화학분석에 이용된 온천수 시료는 2004년도 2월의 건기에 채취되었다. 이 연구결과에 의하면, 아산온천(구 온양온천), 덕산온천, 포천지구 및 속초지구와 같이 쥬라기 대보화강암류지역에 주로 분포하는 온천수는 PAAS(Post-Archean Australian Shale)로 규격화하였을 경우 경희토류(La-Sm)이 결핍되어 있고, 중희토류는 편평한 분포양상을 보여주었다. 그리고 Eu의 이상(anomaly)이 거의 존재하지 않으며, Ce의 경우 부(-)의 이상 (Ce netative anomaly)을 보여주기도 한다. 반면에 옥천대 이남에 분포하는 백암, 덕구, 부곡, 마금산, 동래, 해운대, 포항지구의 온천수들은 전반적으로 편평한 분포특성을 보여준다. 그리고 대체적으로 Eu 과 Ce의 강한 정(+)의 이상을 보여준다. 이와 같은 Eu과 Ce의 이상은 온천수와 대수층간의 반응에 따른 결과로서 사료된다.

  • PDF

The Accumulation of Rare Earth Elements Fertilizer and its Subsequent Effects on Apple Fruit Quality at Harvest and During Storage (희토류비료 시비가 사과 과실내 축적과 수확 및 저장 중 사과품질에 미치는 영향)

  • Zheng, Wei-Wei;Park, Mu-Young;Hirst, Peter;Yoon, Tae-Myung;Chun, Ik-Jo
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.452-458
    • /
    • 2012
  • Rare earth elements fertilizer and Ca were sprayed on eight-year-old 'Fuji'/M.9 apple trees during two consecutive seasons, and fruit quality was quantified at harvest and 5-month long storing in a commercial cooling house at $4^{\circ}C$ and 80~85% RH. In the first season, single-sprayed of rare earth elements fertilizer showed appreciable accumulations of its elements (La, Pr, Gd, and Nd) in the fruit. In the following season, application of higher doses accumulated higher amount, indicating that the accumulation of rare earth elements was dose-dependent. However, rare earth elements did not affect the accumulations of Ca, Mg, and K in 'Fuji' apple fruit showed that there was no interaction between rare earth elements and these macronutrients. Double-spray of 0.2% rare earth elements increased fruit redness at harvest and had exhibited better color. Although at harvest it did not show significant effects on fruit weight, pulp firmness and titratable acidity (TA), but had pronounced effects on inhibiting fruit softness and retarded decrease of TA during storing. Furthermore, it reduced respiration rate and inhibited ethylene production during storing indicated that rare earth elements may be an alternative for prolonging the shelf life of 'Fuji'/M.9 apple fruit.

A study on the separation and determination of the rare earth Elements by the AG® 50W-X8 cation exchange resin (AG® 50W-X8 양이온교환수지를 이용한 희토류원소의 분리와 분석에 관한 연구)

  • Lee, Jung Sook;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.272-278
    • /
    • 2008
  • Methods to separate 14 rare earth elements (REEs) and yttrium by the $AG^{(R)}$ 50W-X8 cation exchange resin, and to determine REEs by inductively coupled plasma atomic emission spectrophotometry (ICP-AES) were described. Ion exchange capacities of REEs on the resin were so high that the REEs were quantitatively ion exchanged under the flow rate of 0.3~1.0 mL/min at pH 1~6. The breakthrough capacity curve of the REEs showed that ion exchange capacities of light REEs (Cerium group) were greater than that of the heavy REEs (Yttrium group). When $200{\mu}g$ of each REEs was ion exchanged on 100 mg of resin, most of the heavy REEs were quantitatively desorbed with 10 mL of 2.0 M of $HNO_3$, while most of the light REEs with 30 mL. The method was applied to the monazite sample. The REEs could be separated from matrix, since ion exchange capacities of matrix ions of Ca, Ti, Mg, Mn were much lower than that of the REEs. However the relative standard deviations of the analytical results by the present method were not improved, as high as 1~5%.

Strategy to Recover Rare Earth Elements from a Low Grade Resource via a Chemical Decomposition Method (화학적 분해법을 이용한 난용성 자원으로부터 희토류 회수 특성 연구)

  • Kim, Rina;Cho, Heechan;Jeong, Jinan;Kim, Jihye;Lee, Sugyeong
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, rare earth elements (REE) leaching from a refractory REE ore containing goethite as a major gangue mineral was conducted, introducing a two-stage method of chemical decomposition-acid leaching. At the chemical decomposition step, using one of alkaline agent, NaOH, the ore was decomposed, changing NaOH concentration from 20 to 50 wt% at 10% (w/w) of pulp density and the maximum temperature achieved without boiling at each NaOH concentration. With increasing NaOH concentration, light REE (Ce, La and Nd) and iron were concentrated in the solid phase which is the decomposed product, while aluminum (Al) and phosphorus (P) were removed to the liquid phase, and their concentrations in the solid phase were down to 0.96 and 0.17%, respectively. In addition, through XRD analysis, it was found that the crystallinity of goethite was considerably decreased. At the acid leaching step, the product decomposed by 50 wt% NaOH was leached at 3.0 M HCl and 80 ℃ for 3 hr, then the REE leaching efficiency was above 94% (Ce 80%), and the leaching efficiencies of Al and P were decreased to 12 and 0%, respectively. Therefore, in terms of both REE leaching efficiency and impurity removal, those decomposition and leaching conditions were chosen as optimum processing methods of the investigated material. In terms of REE leaching mechanism, because REE and iron leaching efficiencies showed the positive correlation each other, so it can be concluded that decreasing crystallinity of goethite affect the improvement of REE leaching.