• Title/Summary/Keyword: 경화정밀도

Search Result 216, Processing Time 0.112 seconds

The Effect of Structure on Torsional Fatigue Strength of Surface Hardened Carbon Steel (표면 경화된 탄소강의 비틀림 피로강도에 미치는 조직의 경향)

  • Ko Jun Bin;Kim Woo Kang;Won Jong Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.130-136
    • /
    • 2005
  • Induction hardening increases hardness near the surface where it's most needed, and leaves the surface in compression which improves fatigue life. Although case depth and chemical composition are same, the structure of induction hardened shaft affects the fatigue strength and life because of austenization during hardening. Therefore torsional fatigue tests of specimens from various structures, which are obtained by nomalizing, spheriodized annealing and tempering after quenching, were conducted on induction hardened automotive drive shafts with various case depths and loads applied in order to evalute the relation between structure and fatigue strength.

A Study on the Effect of Beam Mode on the Size of Hardened Zone in Laser Surface Hardening (레이저 표면경화처리에서 빔의 형태가 경화층 크기에 미치는 영향에 관한 연구)

  • Kim, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaussian mode of beam. Then the model for rectagular beam was used for the predicition of the size of hardened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters such as beam mode, beam size, and traverse speed.

  • PDF

Properties and Curing Behaviors of UV Curable Adhesives with Different Coating Thickness in Temporary Bonding and Debonding Process (Temporary Bonding and Debonding 공정용 UV 경화형 접착 소재의 코팅 두께에 따른 물성 및 경화거동)

  • Lee, Seung-Woo;Lee, Tae-Hyung;Park, Ji-Won;Park, Cho-Hee;Kim, Hyun-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.873-879
    • /
    • 2014
  • UV curable adhesives with different acrylic functionalities were synthesized for temporary bonding and debonding process in 3D multi-chip packaging process. The aim is to study various factors which have an influence on UV curing. The properties and curing behaviors were investigated by gel fraction, peel strength, probe tack, and shear adhesion failure temperature. The results show that the properties and curing behaviors are dependent on not only acrylic functionalities of binders but also UV doses and coating thickness.

Comparison of Characteristics on Induction and Continuous Nd:YAG Laser Surface hardening of SM45C Steel (SM45C강의 연속파 Nd:YAG레이저표면경화와 고주파표면경화특성 비교)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.176-183
    • /
    • 2005
  • Laser heat treatment technology is used for improving the feature of fatigue resistance and wear resistance in mobile parts. The purpose of this study is to compare the characteristics of laser heat treatment and high frequency heat treatment, which is commonly used in industrial place. For the preemptive experiment, the distribution, depth and size of hardening and its micro-structural features were compared between surface heat treatment case by defocusing and variables of each process for heat treatment by exclusively manufactured heat treatment optical system. As a result, high frequency heat treatment has wide distribution of hardening depth and width about 3 times larger than laser heat treatment, however, its average hardness showed 621.4Hv which is smaller than the average hardness of laser heat treatment with 691Hv.

  • PDF