• Title/Summary/Keyword: 경화단계

Search Result 152, Processing Time 0.023 seconds

Evaluation of Durability of Cement Matrix Replaced with Ground Calcium Carbonate (중질탄산(重質炭酸)칼슘을 혼합(混合)한 시멘트 경화체(硬化體)의 내구특성(耐久特性) 평가(評價))

  • Jung, Ho-Seop;Lee, Seung-Tae;Kim, Jong-Pil;Pak, Kwang-Pil;Kim, Seong-Soo
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.74-80
    • /
    • 2006
  • In this article, we would like to investigate a durability characterization of cement mortar with inert filler, which is ground calcium carbonate(GCC). The kinds of techniques to evaluate cement mortar are chloride ion ingress, carbonation and sulfate attack. For the experimental result of the resistance of chloride ion ingress, carbonation and sulfate attack, as the addition of GCC makes decreasing the permeability by micro-filler effect, the specimens of $5{\sim}15%$ ratio of replacement are superior to the GCC0 mortar specimen with respect to durability of cement matrix in this scope.

Characteristics of Cyclic Drying-Wetting on Strength of Solidified Soil Mixed Porosity Silica (다공성 실리카를 혼합한 경화토의 건습반복 강도특성)

  • Kim, Donggeun;Bang, Seongtaek;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.29-34
    • /
    • 2014
  • In order to examine strength properties depended on climate changes of solidified soil amended by porosity silica which enhance harms of cement, this study conducts a wetting and drying repetition test and then, attempts to verify strength properties before and after solidified soil gets environmental influence. Test pieces for the unconfined compression test changed the mixing ratio of solidified soil compared to mixed soil weigh to 5 %, 10 % and 15 %. For each step, it was created by mixing 0.5 %, 1.0 % and 1.5 % of wood chips, and curing period for 7, 14, and 28 days. Then, the wetting and drying repetition process was repeated 0, 3, 6, and 12 cycles to analyze mechanical properties. To also evaluate changes of relative dynamic elastic modulus before and after the wetting and drying, dynamic elastic modulus tests were conducted when each cycle was completed.

Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film (다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2019
  • The demand for smaller, faster, and multi-functional mobile devices in increasing at a rapidly increasing rate. In response to these trends, Stacked Chip Scale Package (SCSP) is used widely in the assembly industry. A film type adhesive called die attach film (DAF) is used widely for bonding chips in SCSP. The DAF requires high flowability at high die attachment temperatures for bonding chips on organic substrates, where the DAF needs to feel the gap depth, or for bonding the same sized dies, where the DAF needs to penetrate bonding wires. In this study, the mixture design of experiment (DOE) was performed for three raw materials to obtain the optimized DAF recipe for low elastic modulus at high temperature. Three components are acrylic polymer (SG-P3) and two solid epoxy resins (YD011 and YDCN500-1P) with different softening points. According to the DOE results, the elastic modulus at high temperature was influenced greatly by SG-P3. The elastic modulus at $100^{\circ}C$ decreased from 1.0 MPa to 0.2 MPa as the amount of SG-P3 was decreased by 20%. In contrast, the elastic modulus at room temperature was dominated by YD011, an epoxy with a higher softening point. The optimized DAF recipe showed approximately 98.4% pickup performance when a UV dicing tape was used. A DAF crack that occurred in curing was effectively suppressed through optimization of the cure accelerator amount and two-step cure schedule. The imizadole type accelerator showed better performance than the amine type accelerator.

The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation (금속-세라믹용 Pd-Ag-Sn-Au계 합금의 모의소성 시 산화처리 후 급랭에 의한 경화 효과)

  • Shin, Hye-Jeong;Kim, Min-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.197-206
    • /
    • 2017
  • The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation was investigated by means of hardness test, field emission scanning electron microscopic observations, and X-ray diffraction analysis. The hardness decreased by ice-quenching after oxidation, which was induced by the homogenization of the ice-quenched specimen. The decreased hardness by ice-quenching after oxidation was recovered from the wash stage which was the first stage of the remaining firing process for bonding porcelain. After wash stage, the hardness of the ice-quenched specimens decreased during the subsequent porcelain firing process. But the final hardness of the ice-quenched specimens after oxidation was higher than that of the specimens cooled at stage 0 after oxidation. The increase in hardness of the specimens during the first firing process was caused by the lattice strains generated at the interface between the face-centered cubic Pd-Ag-rich matrix and the face-centered tetragonal Pd3(Sn, Ga, In) precipitate. The decrease in hardness of the specimens during the remaining firing process was caused by the microstructural coarsening.

Manufacturing and Mechanical Properties of Epoxy Fibers Spinning using Anhydride and Amine Hardeners (산 무수물계 및 아민계 경화제를 이용한 열경화성 에폭시 섬유 제조 및 물성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.408-413
    • /
    • 2016
  • Commonly-used polymers are manufactured as versatile forms. Furthermore, continuous polymer fibers are recently manufactured using nylon or aramid fiber. One of common epoxy was also used to make polymer fibers. Bisphenol-A type was used as base epoxy whereas amine and anhydride were used as hardeners. Epoxy fibers was cured by stepping up the temperature to maintain the shape of epoxy fiber. Surface energy was measured to confirm the degree of interfacial adhesion by modified static contact angle method. After mechanical properties were measured via fiber tensile test, the evaluation of fiber fracture was proceeded. Tensile strength of epoxy fiber using amine type hardener was higher as 138 MPa than anhydride case as 70 MPa. Fractured surface exhibited different failure patterns at the cross-section.

Durability of Mortar Matrix Replaced with Recycled Fine Aggregates (순환골재(循環骨材)를 혼입(混入)한 모르타르 경화체(硬化體)의 내구(耐久) 특성(特性))

  • Kim, Jong-Pil;Lee, Seung-Tae;Jung, Ho-Seop;Park, Kwang-Pil;Kim, Seong-Soo
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.20-27
    • /
    • 2007
  • This paper presents a detailed experimental study on the durability properties of mortar matrix made with two kind of recycled fine aggregates(RAA, RAB) and five replacement levels (0, 25, 40, 75 and 100) of the recycled fine aggregates as a partial replacement of natural fine aggregate (NA). The durability properties of mortar matrix was evaluated using compressive strength, chloride ion ingress, sulfate attack and carbonation. The test results indicated that the water absorption and Adhered mortar of the recycled fine aggregate was a major factor controlling durability properties. Hereafter, when using built recycled fine aggregate is expected, appropriate removal Adhered mortar and reasonable replacement ratio of recycled fine aggregates was 25% weight of cement are advised to apply to the concrete materials.

Manufacturing Properties and Hardening Characteristic of CO2 Reactive Hardening Cement (이산화탄소 반응경화 시멘트 제조 및 경화특성 연구)

  • Ki-Yeon Moon;Byung-Ryeol Kim;Seung-Han Lee;Moon-Kwan Choi;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.52-59
    • /
    • 2022
  • Calcium silicate based cement (CSC) is a low-carbon cement that emits less CO2 by up to 70% compared to ordinary Portland cement during its manufacture. Most developed countries have commercialized CSC, whereas Korea is still investigating the manufacturing characteristics and basic properties of CSC. This paper provides a review of methods for manufacturing CSC using domestic raw materials and discusses the possibility of CSC localization based on an evaluation of the basic physical properties of manufactured CSC. The experimental results of this study indicate that the primary mineral components of CSC were CS, C3S2 C2S, and unreacted SiO2. This suggests the possibility of manufacturing CSC using domestic raw materials that exhibit mineral compositions similar to that of theoretical CSC. The compressive strength of CSC mortar is less than 1MPa at the age of 7 d under wet curing. This implies that hydration does not affect the property development of CSC mortar. Meanwhile, during carbonation curing, the compressive strength is 56 MPa or higher after 7 d, which indicates excellent early strength development. Furthermore, results of Thermogravimetric Analysis Differential scanning calorimetry (TG/DSC) show that a significant amount of CaCO3 is formed, which is consistent with the results of previous studies. This implies that carbonation is associated significantly with the properties of CSC.

Effect of cooling rate on precipitation hardening of a Pd-Cu-Ga-Zn metal-ceramic alloy during porcelain firing simulation (금속-세라믹용 Pd-Cu-Ga-Zn계 합금의 모의 소성 시 냉각 속도가 석출 경화에 미치는 영향)

  • Kim, Min-Jung;Shin, Hye-Jeong;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.207-216
    • /
    • 2017
  • The effect of cooling rate on precipitation hardening of a Pd-Cu-Ga-Zn metal-ceramic alloy during porcelain firing simulation was investigated and the following results were obtained. When the cooling rate was fast (Stage 0), the hardness of the alloy increased at each firing step and the high hardness value was maintained. When the cooling rate was slow (Stage 3), the hardness was the highest at the first stage of the firing, but the final hardness of the alloy after complete firing was lower. The increase in hardness of the specimens cooled at the cooling rate of Stage 0 after each firing step was caused by precipitation hardening. The decrease in hardness of the specimens cooled at the cooling rate of Stage 3 after each firing step was attributed to the coarsening of the spot-like precipitates formed in the matrix and plate-like precipitates. The matrix and the plate-like precipitates were composed of the $Pd_2(Cu,Ga,Zn)$ phase of CsCl-type, and the particle-like structure was composed of the Pd-rich ${\alpha}$-phase of face-centered cubic structure. Through the porcelain firing process, Cu, Ga, and Zn, which were dissolved in Pd-rich ${\alpha}$ particles, precipitated with Pd, resulting in the phase separation of the Pd-rich ${\alpha}$ particles into the Pd-rich ${\alpha}^{\prime}$ particles and ${\beta}^{\prime}$ precipitates composed of $Pd_2(Cu,Ga,Zn)$. These results suggested that the durability of the final prosthesis made of the Pd-Cu-Ga-Zn alloy can be improved when the cooling rate is fast during porcelain firing simulation.

The Web systems Design and Implementation of the Aptitude Test for Vocational Education (직업교육을 위한 기초능력검사 웹 시스템 설계 및 구현)

  • Kim, Kyoung-Hwa;Min, Su-Hong;Cho, Dong-Sub;Kim, Myung-Sook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.823-826
    • /
    • 2005
  • 본 시스템은 컴퓨터를 이용한 검사의 효율성과 편리성의 장점을 활용하여 웹기반의 시스템 환경에서 학생들에게 직무에 필요한 기초능력을 영역별 세부항목으로 분류, 단계별로 제시하고, 각 영역별 문제를 스스로 학습함으로써 자신의 기초능력을 백분 발휘할 수 있도록 도와주며, 또한 검사 후 결과에서 각 영역을 자세히 분석해줌으로써 학생 스스로 자신의 부족한 능력을 진단하고 재학습 할 수 있도록 피드백을 제공한다.

  • PDF

Implementation of the Classification using Neural Network in Diagnosis of Liver Cirrhosis (간 경변 진단시 신경망을 이용한 분류기 구현)

  • Park, Byung-Rae
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.17-33
    • /
    • 2005
  • This paper presents the proposed a classifier of liver cirrhotic step using MR(magnetic resonance) imaging and hierarchical neural network. The data sets for classification of each stage, which were normal, 1type, 2type and 3type, were analysis in the number of data was 231. We extracted liver region and nodule region from T1-weight MR liver image. Then objective interpretation classifier of liver cirrhotic steps. Liver cirrhosis classifier implemented using hierarchical neural network which gray-level analysis and texture feature descriptors to distinguish normal liver and 3 types of liver cirrhosis. Then proposed Neural network classifier learned through error back-propagation algorithm. A classifying result shows that recognition rate of normal is $100\%$, 1type is $82.8\%$, 2type is $87.1\%$, 3type is $84.2\%$. The recognition ratio very high, when compared between the result of obtained quantified data to that of doctors decision data and neural network classifier value. If enough data is offered and other parameter is considered this paper according to we expected that neural network as well as human experts and could be useful as clinical decision support tool for liver cirrhosis patients.

  • PDF