• Title/Summary/Keyword: 경제적 운전조건

Search Result 129, Processing Time 0.03 seconds

제강분진을 이용한 침출수의 화학적 산화처리

  • 장윤영;강정우;정재현;배범한;박규홍;장윤석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.107-110
    • /
    • 2001
  • 제철소에서 매년 대량 발생되어 주로 매립처분되고 있는 제강분진의 재활용 방안으로서, 폐수처리분야에 널리 사용되고 있는 펜톤산화공정의 반응촉매원인 Fe 공급원으로서 제강분 진의 활용 가능성에 대한 연구를 수행하였다. 본 연구에서는 포항제철소에서 제철부산물로 발생되는 제강분진을 전처리 없이 산화촉매로 사용하여 김포 수도권 매립지의 침출수 처리 공정에서 펜톤산화조에 유입되는 원수를 대상으로 과산화수소에 의한 산화처리 실험을 수행하였다. 반응은 회분식으로 수행하였으며, 일반적으로 알려진 펜톤산화반응의 주요 반응조 건인 운전 pH, 과산화수소 주입량 및 분할주입, 제강분진의 주입량 등의 변화에 따른 각 조 건별 시간에 따른 반응결과를 알아보았다. 또한 기존의 Fe 공급원으로 사용되고 있는 FeSO$_4$와 처리성능 및 적용조건에 대한 비교 실험도 수행하였다. 침출수 수질변화는 TOC (Total Organic Carbon) analyzer를 사용하여 측정한 TOC값으로 나타냈으며, pH controller 와 정량펌프를 사용하여 HCl과 NaOH주입을 통해 반응기간동안 일정 pH를 유지하였다. 본 연구결과, 최적 pH 조건인 4에서 최대 75% TOC 제거율을 나타내었으며, 대부분의 반응은 30분 이내에 이루어졌다. 주어진 실험조건에서 FeSO$_4$와 비교하여 반응속도와 처리효율에서 향상된 결과를 나타내었으며 반응 후 응집침전실험에서도 보다 높은 처리효과를 얻을 수 있었다. 결론적으로, 과산화수소/제강분진 시스템을 이용한 화학적 산화처리방법은 경제성과 처리성능에서 기존의 펜톤산화공정의 대체방안으로서 향 후 적용가능성이 높을 것으로 기대된다.g, 200 mg/kg, 300 mg/kg의 순서로 함량이 점차 감소하는 결과를 얻을 수 있었다. 이상의 결과를 종합하여 볼 때 가자 메탄올추출물은 PQ 유도독성을 신장 및 폐조직에서 효과적으로 경감시키는 것으로 나타났다.ted retailers ("sellers") must accept end-of-life items returned to them by the consumers. At the local level, Taipei City implements a pay-as-you-throw program, whereby citizens pay waste collection and treatment fees through the purchase of special trash bags approved by the Taipei City Government. However. recyclables that are separated by citizens are collected free-of-charge by the City. Taichung City and Kaohsiung City, on the other hand, enforce mandatory sorting schemes, whereby citizens face penalties if they don't separate recyclables from the trash before pick-up. These programs have resulted in a significant reduction in municipal waste. Per capita waste collected per day has dropped from 1.143

  • PDF

Feasibility of a Solar Thermal Organic Rankine Cycle Power Plant for an Apartment Complex with Aspen Plus® (ASPEN PLUS®를 이용한 태양열 유기랭킨사이클 열병합 발전시스템의 공동주택 적합도 분석)

  • Im, Seokyeon;Kim, Hyung-Geun;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • In this study, a solar thermal system is designed to provide hot water and electricity for improvement of solar thermal energy availability in an apartment complex. The electricity is generated with Organic Rankine Cycle (ORC) by the solar thermal energy. R134a, R141b and R245fa are selected for operating fluid of the solar thermal ORC system. ORC with R245fa shows the best performance based on the variation of pressure. The irreversibility of component showed that the technology advance of the evaporator ensures a performance improvement. The sensitivity study results indicate that the turbine performance is most effective way to improve the performance of ORC system. An economic analysis showed that approximately 50% more income could be achieved by a solar thermal ORC system with a hot water supply.

Delopment of Database for Environment Monitoring and Control Information in Greenhouse (온실 생육환경.제어정보 수집 및 데이터베이스 개발)

  • 공대광;류관희;진제용;유윤관;임정호
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.192-197
    • /
    • 2002
  • 1. 실시간 모니터링 -온실 내부환경의 계측장치로 모듈화된 단일 칩 마이크로프로세서를 이용한 하우스 모니터를 개발하였다. 개발된 다수의 하우스 모니터는 RS-485통신을 이용하여 개발된 프로토콜을 통하여 그룹 모니터와 통신하면서 계측 데이터를 전송하였고 안정된 계측 성능을 보였다. 또한 그룹 모니터는 하우스모니터로부터 수신한 데이터를 인터넷 환경 TCP/IP 통신에 의해 서버에 정보를 전송하고 데이터베이스 서버에 저장할 수 있었다. 2. 클라이언트 서버 모델 -클라이언트 모니터를 통하여 허용된 사용자들은 해당 온실의 상황을 원격지에서 파악할 수 있는 있었다. 또한 분산환경 기술을 이용하여 서버를 경유하여 데이터베이스 서버에서 데이터 셋을 가져와 과거 재배 사례 등을 조회 및 이용 가능하였다. 이는 전문가에게 접근을 허용함으로써 재배에 관한 지원이 가능하도록 하였다. 데이터 베이스 시스템으로 연계하여 온실환경 정보를 분석하는 것이 가능하였다. 3. 기대효과 및 나아가야 할 방향 -개발된 시스템을 식물 공장 내 작물의 재배환경을 데이터베이스화하여 재배사례 데이터베이스를 형성하고 작물이 가장 잘 자라는 최적 재배 환경을 연구하여 고품질의 작물 재배에 이용될 수 있다. 또한 식물공장의 운전실적, 환경 조건, 환경 조절비용 등의 분석에 효율적으로 이용될 수 있을 것으로 예상되며 각 환경인자들과의 관계를 구명하는데 도움을 줄 것이다. 축적된 작물의 재배 사례 데이터베이스를 이용하여 작물 특성 및 재배 연구에 도움을 줄 수 있을 것이다. 제어 장치들의 운영실적을 분석함으로써 제어 시스템의 효율적이고 경제적인 제어가 가능하도록 할 수 있을 것이다. 이들이 모두 완성되면 전문가 및 전문가 시스템으로부터 지원을 받는 지능형 식물공장이 가능할 것이다. 본 연구에서 개발한 계측 모듈 및 데이터베이스 시스템은 실제 농가에 설치된 전용선을 이용하여 실증 실험을 통해 수정·보완하여야 할 것이다. 또한 시설원예분야에서 있어서 통신체계에 대한 표준화 연구가 수행되어 앞으로 개발될 다른 시스템들과의 호환성을 갖도록 해야 할 것이다. 앞으로 온실의 경영 및 관리 데이터베이스를 개발하여 첨단온실의 통합 관리 및 정보 시스템을 구축하여야 할 것이다. 또한, 시설원예의 환경 설계의 기준을 적용할 수 있도록 하여야 할 것이다.

  • PDF

A Study on the Optimal Operating Conditions for an Unreacted Hydrogen Oxidation-Heat Recovery System for the Safety of the Hydrogen Utilization Process (수소 활용공정 안전성 확보를 위한 미반응 수소 산화-열 회수 시스템의 운전 조건 최적화 연구)

  • Younghee Jang;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.307-312
    • /
    • 2023
  • In this study, a catalytic oxidation-heat recovery system was designed that can remove unreacted with a concentration of about 1% to 6% in the exhaust gas of hydrogen fuel cells and recover heat to ensure safety in the hydrogen economy. The safety system was devised by filling hydrogen oxidation catalysts at room temperature that can remove unreacted hydrogen without any energy source, and an exhaust-heat recovery device was integrated to efficiently recover the heat released from the oxidation reaction. Through CFD analysis, variations in pressure and fluid within the system were shown depending on the filling conditions of the hydrogen oxidation system. In addition, it was found that waste heat could be recovered by optimizing the temperature of the exhaust gas, flow rate, and pressure conditions within the heat recovery system and securing hot water above 40 ℃ by utilizing the exhaust gas oxidation heat source above 300 ℃. Through this study, it was possible to confirm the potential of utilizing hydrogen processes, which are applied in small to medium-sized systems such as hydrogen fuel cells, as a safety system by evaluating them at a pilot scale. Additionally, it could be a safety guideline for responding to unexpected hydrogen safety accidents through further pilot-scale studies.

A Study on the Hydraulic Characteristics of Rashig Super-Ring Random Packing in a Counter-Current Packed Tower (역류식 충전탑에서 Raschig Super-ring Random Packing의 수력학적 특성에 대한 연구)

  • Kang, Sung Jin;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.102-108
    • /
    • 2020
  • In recent years, packed column has been widely used in separation processes, such as absorption, desorption, distillation, and extraction, in the petrochemical, fine chemistry, and environmental industries. Packed column is used as a contacting facility for gas-liquid and liquid-liquid systems filled with random packed materials in the column. Packed column has various advantages such as low pressure drop, economical efficiency, thermally sensitive liquids, easy repairing restoration, and noxious gas treatment. The performance of a packed column is highly dependent on the maintenance of good gas and liquid distribution throughout a packed bed; thus, this is an important consideration in a design of packed column. In this study, hydraulic pressure drop, hold-up as a function of liquid load, and mass transfer in the air, air/water, and air-NH3/water systems were studied to find the geometrical characteristic for raschig super-ring experiment dry pressure drop. Based on the results, design factors and operating conditions to handle noxious gases were obtained. The dry pressure drop of the random packing raschig super-ring was linearly increased as a function of gas capacity factor with various liquid loads in the Air/Water system. This result is lower than that of 35 mm Pall-ring, which is most commonly used in the industrial field. Also, it can be found that the hydraulic pressure drop of raschig super-ring is consistently increased by gas capacity factor with various liquid loads. When gas capacity factor with various liquid loads is increased from 1.855 to 2.323 kg-1/2 m-1/2 S-1, hydraulic pressure drop increases around 17%. Finally, the liquid hold-up related to packing volume, which is a parameter of specific liquid load depending on gas capacity factor, shows consistent increase by around 3.84 kg-1/2 m-1/2 S-1 of the gas capacity factor. However, liquid hold-up significantly increases above it.

A Study on the Supply and Stray Current Distribution of the DC Railway Power System (직류전기철도 급전시스템에서 공급 및 누설전류 분포에 관한 연구)

  • Cho, Woong-Ki;Choi, Kyu-Hyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.160-168
    • /
    • 2010
  • This paper presents the analysis of the current as stray current and supplied current of the substation, on the DC railway power system. In DC railway power supply system, the running rails are usually used as the return conductor(negative-polarity) for traction load current. This condition mainly focuses on economic considerations, since it does not require the installation of an additional return conductor. But, problems of low resistance between the running rails for the return conductor and earth allows a significant part of the return load current to leak into the earth. This current is normally called to as leakage or stary current. This stary currents creates serious problems for any electrified matter in the underground. Therefore, reduction of stray current of the DC railway power supply system is also of direct benefit to the operational and safety aspects of the DC railway systems. In this paper, deal with the analysis of the current distribution on the DC railway power system applied the common grounding system, using SPLIT of CDEGS program.

Recovery of Ammonia Nitrogen using Gas-permeable Membranes (기체투과막을 이용한 암모니아성 질소 회수방안)

  • Lee, Sang-hun;Chae, Sang Yeop
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2022
  • Ammonia nitrogen can be effectively recovered from livestock manure waste, etc. by using the gas permeable membrane technology. In this case, ammonia gas in the waste passes through the pores in one-side of membrane, impregnated in waste, and then reach the opposite side of the membrane. The permeated ammonia gas molecules are captured and recovered by acid (such as sulfuric acid) in the solution existing on the opposite side of the membrane. In order to improve ammonia nitrogen removals in the inlet part, high pH should be maintained in the feed waste including ammonia nitrogen to recover, which requires the cost of the chemical. To resolve this issue, previous studies tested various methods, for example, utilization of cheap calcium hydroxide or aeration together with inhibition of unwanted nitrification. The gas permeable membranes used for the recovery of ammonia nitrogen may be characterized, not only by proper heat and chemical resistance, but also by hydrophobicity, allowing selective ammonia gas permeation through the hydrophobic membrane pores. Future research should consider the relevant pilot or upscale processes using on-site wastes with various properties, and identify the optimal design/operation conditions as well as economic feasibility improvement plans.

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

Applicability Evaluation of Nitritation with Various Wastewater (다양한 하수를 대상으로 아질산화 반응 적용성 평가)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • As the seriousness of water pollution resulted from nitrogen is being magnified, research has been conducted to reduce nitrogen in sewage as well as wastewater. Particularly research on innovative nitrogen removal methods that are based on the reaction of nitritation and are economically feasible and eco-friendly has been receiving attention. However, research on the applicability and efficiency of the methods based on the reaction of nitritation has not been completely done yet. Accordingly, the current study has analyzed the characteristics of sewage flowing into municipal wastewater treatment plants, primary clarifier supernatant, recycled water, and livestock wastewater and also operated a laboratory-level reactor. The result shows that recycled water and livestock wastewater contain higher-concentration nitrogen than other kinds of sewage, so they increase nitrogen loading in the water treatment line. And the result of operating a reactor shows that because of ammonium nitrogen low concentration, sewage and primary clarifier supernatant do not induce the reaction of nitritation. Also, there exist differences in the conditions of retention time inducing the reaction of nitritation by the types of sewage, and this seems to be attributed to organic compound and ammonium nitrogen concentration. Among the kinds of sewage inducing the reaction of nitritation, anaerobic digester supernatant indicates the highest efficiency.

Nutrient Recovery from Sludge Fermentation Effluent in Upflow Phosphate Crystallization Process (상향류 인 결정화공정을 이용한 슬러지 발효 유출수로 부터의 영양소 회수)

  • Ahn, Young-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.866-871
    • /
    • 2006
  • The nutrient recovery in phosphate crystallization process was investigated by using laboratory scale uptlow reactors, adopting sequencing batch type configuration. The industrial waste lime was used as potential cation source with magnesium salt($MgCl_2$) as control. The research was focused on its successful application in a novel integrated sludge treatment process, which is comprised of a high performance fermenter followed by a crystallization reactor. In the struvite precipitation test using synthetic wastewater first, which has the similar characteristics with the real fermentation effluent, the considerable nutrient removal(about 60%) in both ammonia and phosphate was observed within $0.5{\sim}1$ hr of retention time. The results also revealed that a minor amount(<5%) of ammonia stripping naturally occurred due to the alkaline(pH 9) characteristic in feed substrate. Stripping of $CO_2$ by air did not increase the struvite precipitation rate but it led to increased ammonia removal. In the second experiment using the fermentation effluent, the optimal dosage of magnesium salt for struvite precipitation was 0.86 g Mg $g^{-1}$ P, similar to the mass ratio of the struvite. The optimal dosage of waste lime was 0.3 g $L^{-1}$, resulting in 80% of $NH_4-N$ and 41% of $PO_4-P$ removal, at about 3 hrs of retention time. In the microscopic analysis, amorphous crystals were mainly observed in the settled solids with waste lime but prism-like crystals were observed with magnesium salt. Based on mass balance analysis for an integrated sludge treatment process(fermenter followed by crystallization reactor) for full-scale application(treatment capacity Q=158,880 $m^3\;d^{-1}$), nutrient recycle loading from the crystallization reactor effluent to the main liquid stream would be significantly reduced(0.13 g N and 0.19 g P per $m^3$ of wastewater, respectively). The results of the experiment reveal therefore that the reuse of waste lime, already an industrial waste, in a nutrient recovery system has various advantages such as higher economical benefits and sustainable treatment of the industrial waste.