• Title/Summary/Keyword: 경사 편심

Search Result 28, Processing Time 0.022 seconds

Compression Test of a TBM Thrust Jack for Validating Buckling Stability (TBM 추진잭의 좌굴 안정성 검토를 위한 압축시험)

  • Mun-Gyu Kim;Min-Gi Cho;Jung-Woo Cho;Han-Young Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.339-347
    • /
    • 2023
  • As the jacks provide a thrust force on the inclined surface, bending deformations by a side force occur in the pedestal and rod parts. This can induce disorder or degradation of the thrust module, buckling stability on the inclined compression condition should be clarified to secure the reliability of shield TBM. For analyzing the stability, a buckling testing method for hydraulic cylinder was investigated and compression testing system was installed. Before the test, a numerical analysis was conducted to check the stress concentration parts. The maximum allowable force was loaded on the cylinder specimen at 0 degree surface condition as a preliminary test. After the test, plastic deformations or hydraulic leakage was not observed. The static stability of it was verified at 0 degree condition.

Hot Extru-Pressure Welding of Aluminum Rods using Eccentric-inclined Stepped Welding Dies (편심 경사 계단형 접합 다이를 사용한 알루미늄 봉재의 열간 압출압접)

  • Jin I. T.;Lee K. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.206-209
    • /
    • 2005
  • It was investigated that two rods of aluminium can be welded by hot extru-pressure welding method with stepped welding dies, and that the welding pressure on the welding surface were analyzed by computer simulation according to the stepped shapes of welding dies. It was known by computer simulation that welding pressure on the welding section of rods welded using stepped welding dies without eccentricity is lowerer than the welding pressure of rods welded using stepped welding dies with eccentricity of welding surface, and that the welding pressure on the welding section of rods using eccentric-inclined stepped welding dies is higher than the welding pressure of rods using stepped welding dies without eccentricity. And it was known by experiments that two rods of aluminium can be welded on the end sections by hot pressure welding method using eccentric-inclined stepped welding dies without relative rotational movement of contacted aluminium rods needed for the purpose of friction heating and pressure.

  • PDF

Pressure Analysis of Sterntube after Bush Bearing Considering Elastic Deflection of Misaligned Journal and Partial Slope of Bearing Bush (탄성 변형된 저어널의 편심과 베어링 부시의 부분경사를 고려한 선미관 후부 베어링의 압력분포 해석)

  • Choung, Joon-Mo;Choe, Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.666-674
    • /
    • 2007
  • It is very important to estimate static squeezing pressure distributions for lining material of sterntube after bearing at dry dock stage since the maximum squeezing pressure value can be one of the significant characteristics representing coming navigation performances of the propulsion system. Moderate oil film pressure between lining material and propulsion shaft is also essential for safe ship service. In this paper, Hertz contact theory is explained to derive static squeezing pressure. Reynolds equation simplified from Navier-Stokes equation is centrally differentiated to numerically obtain dynamic oil film pressures. New shaft alignment technology of nonlinear elastic multi-support bearing elements is also used in order to obtain external forces acting on lining material of bearing. For 300K DWT class VLCC with synthetic bush of sterntube after bearing, static squeezing pressures are calculated using derived external forces and Hertz contact theory. Optimum partial slope of the after bush is presented by parametric shaft alignment analyses. Dynamic oil film pressures are comparatively evaluated for partially bored and unbored after bush. Finally it is proved that the partial slope can drastically reduce oil film pressure during engine running.

Prediction of Cracking and Ultimate Loads of Prestressed Concrete Anchorage Zones in Box-Girder Bridges (프리스트레스트 콘크리트 박스거더 교량 부재의 정착부 균열하중 및 극한하중의 예측)

  • 임동환;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.171-182
    • /
    • 1994
  • Recently, several prestressed concrete box girder bridges have experienced severe cracking along the tendon path when prestress force has been transferred to the anchorage zone. The purpose of the present study is therefore to explore characteristics of the local stress distribution, to study the effects of section geometry of anchorage zones, i.e., tendon inclination, tendon eccentricity and concrett. cover thickness anti to develop recornrncnd;itions for specific design criteria for post~tensioned a:lchorage zones. 7'0 accomplish these objectives, a cc~mprehen sive nonlinar finite element study has been conducted. From this study, realistic forrnulas for crackinq and ultimate load capacities are proposed. 'These equations reasonably well predict the crackinq and ultimate loads of prestressed concrete anchorage zones.

Torsional Behaviour of Concrete Filled Circular Steel Tube Column Considering Confinement Effect (구속효과를 고려한 콘크리트 충전 원형강관 기둥의 비틀림 거동)

  • Yun, Bok Hee;Lee, Eun Taik;Park, Ji Young;Jang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.529-541
    • /
    • 2004
  • Concrete filled steel tube structures were recently used in constructing high-rise buildings due to their effectiveness. Studies on concrete filled steel tubes have been focused on the experiments of uni-axial compression and bending and eccentric compression. There were also a few studies that investigated CFT member behavior under combined compression and torsion. The behavior of a circular CFT column under combined torsion and compression was theoretically investigated, considering the confinement of steel tubes on the concrete, the softening of the concrete, and the spiral effect, which were the dominant factors that influenced compression and torsion strength. The biaxial stress effects due to diagonal cracking were also taken into account. By applying those factors to compatibility and equilibrium conditions, the basic equation was derived, and the equation could be used to incorporate the torsional behavior of the entire loading history of the CFT member.

Vibration Analysis of Separation Screen in a Recycling Plant of Moisturized Construction Wastes (고함수율의 건설폐기물 폐 토속에 포함된 이물질 선별을 위한 분리스크린의 진동해석)

  • Moon, Byung-Young;Bae, Hyo-Dong;Kwag, Kwang-Hun;Bae, Kee-Sun;Song, Ha-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.526-533
    • /
    • 2008
  • In this study, theoretical super screen vibration analysis has been carried out to predict the dynamic characteristics of interactive waste particles. In order to approach these problems, it is necessary to have a fundamental understanding the screening process and the process of both the remaining and the passed material on a screen with several interacting screen planes based on Soldinger(1999) was discussed. Here, the vibrating screen is composed of three assemblies such as screen, wastes guide, and supported screen as shown in Fig. 1. This model is regarded vibrator as the system of screen fixed tilt plates. Then materials(or particles) of different size is to be separated by using the eccentric vibrator and classifying tilt plates. As well moisturized construction wastes is more efficient to separate than moisture-less it. In processing separate mechanism, the more materials is light, the more staying time is long. Thus much lighter construction wastes(wood, Styrofoam, etc) and heavier materials are separated by staying time delay in a super screen. The design results, separation screen were able to know that small and larger particles are conspicuous difference each motion character according to trajectory particles, and small particles raise the probability in classifying tilt plates.

Comparison and Evaluation of Classification Accuracy for Pinus koraiensis and Larix kaempferi based on LiDAR Platforms and Deep Learning Models (라이다 플랫폼과 딥러닝 모델에 따른 잣나무와 낙엽송의 분류정확도 비교 및 평가)

  • Yong-Kyu Lee;Sang-Jin Lee;Jung-Soo Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • This study aimed to use three-dimensional point cloud data (PCD) obtained from Terrestrial Laser Scanning (TLS) and Mobile Laser Scanning (MLS) to evaluate a deep learning-based species classification model for two tree species: Pinus koraiensis and Larix kaempferi. Sixteen models were constructed based on the three conditions: LiDAR platform (TLS and MLS), down-sampling intensity (1024, 2048, 4096, 8192), and deep learning model (PointNet, PointNet++). According to the classification accuracy evaluation, the highest kappa coefficients were 93.7% for TLS and 96.9% for MLS when applied to PCD data from the PointNet++ model, with down-sampling intensities of 8192 and 2048, respectively. Furthermore, PointNet++ was consistently more accurate than PointNet in all scenarios sharing the same platform and down-sampling intensity. Misclassification occurred among individuals of different species with structurally similar characteristics, among individual trees that exhibited eccentric growth due to their location on slopes or around trails, and among some individual trees in which the crown was vertically divided during tree segmentation.

Determination of cross section of composite breakwaters with multiple failure modes and system reliability analysis (다중 파괴모드에 의한 혼성제 케이슨의 단면 산정 및 제체에 대한 시스템 신뢰성 해석)

  • Lee, Cheol-Eung;Kim, Sang-Ug;Park, Dong-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.827-837
    • /
    • 2018
  • The stabilities of sliding and overturning of caisson and bearing capacity of mound against eccentric and inclined loads, which possibly happen to a composite caisson breakwaters, have been analyzed by using the technique of multiple failure modes. In deterministic approach, mathematical functions have been first derived from the ultimate limit state equations. Using those functions, the minimum cross section of caisson can straightforwardly be evaluated. By taking a look into some various deterministic analyses, it has been found that the conflict between failure modes can be occurred, such that the stability of bearing capacity of mound decreased as the stability of sliding increased. Therefore, the multiple failure modes for the composite caisson breakwaters should be taken into account simultaneously even in the process of deterministically evaluating the design cross section of caisson. Meanwhile, the reliability analyses on multiple failure modes have been implemented to the cross section determined by the sliding failure mode. It has been shown that the system failure probabilities of the composite breakwater are very behaved differently according to the variation of incident waves. The failure probabilities of system tend also to increase as the crest freeboards of caisson are heightening. The similar behaviors are taken place in cases that the water depths above mound are deepening. Finally, the results of the first-order modal are quite coincided with those of the second-order modal in all conditions of numerical tests performed in this paper. However, the second-order modal have had higher accuracy than the first-order modal. This is mainly due to that some correlations between failure modes can be properly incorporated in the second-order modal. Nevertheless, the first-order modal can also be easily used only when one of failure probabilities among multiple failure modes is extremely larger than others.