• Title/Summary/Keyword: 경사 시추공

Search Result 54, Processing Time 0.024 seconds

Relation Between Fracture Frequency and Hydraulic Characteristics of Granite in Busan Area (부산지역 화강암의 단열빈도와 수리적 특성의 상관성)

  • 함세영;김문수;류상민;이병대;옥수석
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.279-294
    • /
    • 2001
  • When constructing subsurface structures and drilling wells, the precise hydraulic parameters must be obtained for operating safety and for developing enough quantity of groundwater, respectively. In this study we conducted water injection test at different depths on six boreholes drilled in the granite of Mt. Geumjeong. Hydraulic conductivity was calculated using Moye and Hvorslev methods. The relation between hydraulic conductivity and fracture frequency data obtained from acoustic televiewer and core log was analyzed. From the result, though the correlation coefficient between the hydraulic conductivity and the fracture frequency from acoustic televiewer data is higher than that between the hydraulic conductivity and the fracture frequency from core log data on most of the test holes, the correlation coefficient between the hydraulic conductivity and the fracture frequency from the televiewer data is lower than 0.5. This suggests that the hydraulic conductivity of granite in the study area is influenced not only by the fracture frequency but also by various factors of fracture network such as fracture aperture and length, interconnectivity of fractures, fracture orientation and angle, filling material and so on.

  • PDF

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.

Slope Failure Along the Weathered And Mobilized Foliation Plane : Studies for Causes of the Failure and the Supporting Methodologies (풍화된 엽리면을 따라 붕괴된 대절토 사면의 붕괴요인 분석과 보강방안에 대한 연구)

  • Hwang, Sang-Gi;Kim, Young-Muk;Ji, In-Taeg;Jeon, Byoung-Choo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.775-784
    • /
    • 2009
  • Weathered foliation could act as a critical failure plane because this type of plane tend to have low roughness and long extensions. A big constructed slope at $\bigcirc\bigcirc$ road construction site was failed due to the block movement along a fault zone which is parallel to foliation. Tectonic activity reactivated a fault zone parallel to foliation, and the fault clay within the shear zone metamorphosed retrogressively to chrolite. The failed block moved when the block weigh lost the balancing with the resisting force of the retrogressively metamorphosed chrolite. Evaluating the three dimensional distribution of the foliation was critical for establishing a plan for the stabilization of the slope. For this purpose, 10 boreholes were drilled as a lattice distribution, and the BIPS analyses are performed at each boreholes. The fractures measured in the boreholes are projected into 15 cross sections and their distributions are analysed, using Fracjection software. The projection analyse show that the strike of the foliation gets dipper towards left side of the slope. This geometry indicates that there are more failure block geometry at left side of the slope. Potential failure planes are searched using the projection method, and these information are provided for further support design.

  • PDF

Stability Analysis of Large Slope Based on In-Situ Monitoring and Numerical Analysis (대절토사면의 현장계측 및 수치해석을 통한 사면 안정성 분석 사례)

  • Kim, Byung-Chul;Hwang, Ji-Hoon;Won, Ji-Hyun;Choi, Mun-Kyu;Kwon, Oh-Sung;Song, Chi-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.629-638
    • /
    • 2005
  • 본 연구대상 사면은 연장이 300m이고 최대 사면높이가 80m에 달하는 대절토 사면으로 서 총 11 소단으로 이루어져 있으며, 전 사면에 걸쳐 Soil Nail 공법으로 보강이 되어있다. 사면 상단부에 설치된 2개의 경사계를 이용하여 주기적으로 사면의 수평방향 변위 계측을 실시하던 중, 사면 하부의 소단 굴착과정에서 상대적으로 급격한 사변경사 방향의 수평변위가 발생한 것을 확인하였다. 본 연구에서는 사면의 수평방향 변위 계측결과 분석 및 대상 사면에 대한 수치해석을 통하여 사면의 안정성 여부를 판단하고자 하였으며, 굴착단계별 수평방향 변위량 및 변위 양상을 분석함으로써 급격히 증가한 변위의 원인을 파악하였다. 수치해석을 통해 나타난 사면 굴착 단계에 따른 사면 토체의 소성영역을 도시한 결과, 사면 전체에 걸쳐 대규모 파괴면이 나타났으며 파괴활동면이 Soil Nail 로 보강된 영역의 바깥쪽에 위치하여 사면 안정성 확보를 위한 대책방안이 수립되어야 할 것으로 판단되었다. 또한 보다 자세한 원인 규명을 위한 확인 시추조사를 실시하여 하부 지층 특성을 파악하였으며, 하부에 풍화가 심하고 절리 및 균열이 심한 파쇄구간이 분포하고 있음이 확인되었다. 연구 대상 사면의 변위 계측 결과, 수치해석 결과, 확인 시추 조사 결과 및 예상되는 사면 활동의 규모 등을 고려할 때 사변의 안정성 확보를 위한 대책방안이 수립되어야 하며, 본 사면은 억지말뚝과 Ahchor 공법 적용이 가장 적절할 것으로 판단되었다.

  • PDF

The Technical Solution for Various Array Methods in Resistivity Survey (전기비저항 탐사의 다양한 배열 방법에 대한 해석 기법)

  • Park, Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.49-55
    • /
    • 2007
  • Various away methods are required in the electrical resistivity survey in order to find anomalous zone reliably. Array methods are classified as several groups. Among these group, a curved survey along the fixed elevation is designed to increase the mobility of men and survey equipments at the rough terrain. Another method is performed at the survey using inclined, curved, and horizontal boreholes. A survey can also be conducted in an arbitrary location by measurements of potentials for a multi sources. The complex data acquired using various away methods are represented by a correct images reconstructed from the 3D inversion. The element division is applied to the region in which the boreholes are curved and inclined because of a spatial discrepancies between the coordinate of each electrode and the nodal point in a model. The resistivity images are obtained from a good agreement for the anomalous zones in open slope and in survey using an inclined borehole.

Hydrogeological properties around the KURT (KURT 주변지역의 수리지질특성 연구)

  • Lee, Jin-Yong;Kim, Kyung-Su;Park, Kyung-Woo;Han, Woon-Woo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • Current technology for radioactive waste disposal facility is operated as part of KURT site characterization in terms of reliability assessment is conducted to expand. In this study, a geological model of KURT surrounding area on the basis of flow characteristics of the site-scale hydrogeological study was about. Distributed in the study area into four boreholes were plotted using the stereo net NS, NW, EW, Low-angle fracture group was able to identify the components of geological models and include top soil layer, belt of weathering, Low-angle fracture zone, fracture zone was divided into. Separated by fracture of the hydraulic test of through the groundwater aquifer that provides the flow hydraulic conductivity and insulation hydraulic affecting the slope of the normal distribution for the size and direction by performing statistical analysis of fracture in the direction of local ns The advantage was confirmed. In addition, Low-angle fracture hydraulic conductivity of the value of 3.61e-07 m/s has a value greater than the major fracture, the fracture zones exist in the base rock and base rock and the hydraulic characteristics of the different methods applied and had to have a different interpretation judged by was.

Analysis for the Behavior of Ridge-Cut Rock Slope (능선부 개착에 의해 형성된 암반사면 거동해석)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Shin, Sun-Mi;Lee, Guen-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.393-402
    • /
    • 2012
  • A behavior of ridge-cut rock slope had been monitored by installing inclinometers and regional slope movement toward rear side of cut face was detected. To delineate the governing factors of slope behavior, especially backward slip of ridge-cut slope, petrographic characteristics of rock cores obtained from four drilled boreholes had been examined. BIPS images inside boreholes had been acquired and structural characteristics of slope rock had been studied. Mechanical properties of discontinuity planes distributed in the drilled core had been measured and the shear strength of coal seam imbedded-discontinuity planes also had been obtained by performing the direct shear test. Monitoring results of slope behavior had been analyzed by comprehensibly considering both the mechanical and structural characteristics of slope rock and coal seam-imbedded discontinuity planes, and the potential governance of coal seam and clay minerals embedded in the joint plane on the regional slope behavior has been also identified.

Engineering Rock Properties in Seoul Granite (서울화강암의 암반 공학적 특성)

  • 정상원;정상용
    • Proceedings of the KSEG Conference
    • /
    • 2002.04a
    • /
    • pp.201-210
    • /
    • 2002
  • 서울시 북동부의 서울화강암에 대한 암반 공학적 특성 중 터널과 도로 건설시 중요하게 취급되는 절리의 방향성, 절리간격, 절리밀도, 암석의 일축압축강도, 그리고 RQD 값을 수락산과 불암산지역으로 구분하여 비교, 분석하였다. 이 중 절리의 방향성, 절리간격과 절리밀도는 선조사법, 원형조사법, 그리고 면적조사법을 이용하여 야외에서 직접 측정하였다. 암석의 일축압축강도와 RQD의 측정은 시추코아의 표본이 필요하지만 이번 연구에서는 간단히 응용할 수 있는 대비공식을 이용하여 계산하였다. 측정된 대표적인 절리의 방향성은 두 지역에서 모두 3조의 방향성이 나타났으며 즉 2조의 수직정방절리와 저각으로 경사하는 1조의 판상절리로 판명되었으며 두 지역에서 서로 유사한 방향성을 갖는다. 측정된 절리밀도는 0.039-0.066/cm이었으며, 평균절리길이는 1.30-4.52m, 그리고 평균절리간격은 10.3cm에서 최대 59.6cm로 측정된 절리의 방향에 따라 변화가 심하다 또한 슈미트 해머 타격값에 근거한 절리면의 일축압축강도는 217 MPa에서 335 MPa로 매우 강한 암체였으며, 평균절리간격에 기초하여 계산된 이론적 RQD 값은 73.1-98.7%의 값을 갖는 것으로 나타났다.

  • PDF

Analyses of Hydrology and Groundwater Level Fluctuation in Granite Aquifer with Tunnel Excavation (터널 굴착에 의한 화강암 대수층의 수리 수문 및 지하수위변동 분석)

  • Chung, Sang-Yong;Kim, Byung-Woo;Kang, Dong-Hwan;Shim, Byoung-Ohan;Cheong, Sang-Won
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.643-653
    • /
    • 2007
  • Average hydraulic conductivity was $2.64{\times}10^{-8}m/sec$ average RQD was 78%, average porosity was 0.51%, and range of groundwater level was $77.06{\sim}125.97m$ by measured in 8 boreholes at the Surak Mt. tunnel area. Groundwater level of two peaks in the Surak Mt. tunnel area were estimated through linear regression analysis for groundwater level versus elevation. And, average horizontal hydraulic gradient in the Surak Mt. tunnel area was calculated 0.267. Minimum, maximum, and average hydraulic conductivities that estimated by field tests were $5.56{\times}10^{-9}m/sec,\;6.12{\times}10^{-8}m/sec,\;and\;2.64{\times}10^{-8}m/sec$, respectively. Groundwater discharge rates per 1 meter that estimated using minimum, maximum, and average hydraulic conductivities and average horizontal hydraulic gradient were $0.00585m^2/day,\;0.06434m^2/day,\;and\;0.02775m^2/day$, respectively. Pure groundwater recharge rate per unit recharge area was calculated 223.96 mm/yr through water balance analysis. Prediction simulation of groundwater level fluctuation with minimum, maximum, and average hydraulic conductivities were conducted. Discharge rate into the Surak Mt. tunnel for minimum hydraulic conductivity was small, but groundwaer drawdown was highly. Discharge rate into the Surak Mt. tunnel for maximum hydraulic conductivity was higher, but groundwaer level was recovered quickly.

Characterizing Fracture System Change at Boreholes in a Coastal Area in Korea for Monitoring Earthquake (지진감시를 위한 국내 해안지역 시추공 내 단열계 변화 특성)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Ok, Soon-Il;Cho, Hyunjin;Kim, Soo-Gin;Yun, Sul-Min
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Earthquake can change underground stress condition around the hypocenter and affect the fracture systems of the rocks. In Korea, the M5.8 Gyeongju earthquake on September 12, 2016 and M5.4 Pohang earthquake on November 15, 2017 occurred inside the Yangsan fault zone and possibly affected the fracture systems in the Yangsan fault zone and nearby rock masses. In this study, the characteristics of the fracture system (fracture orientation, number of the fractures, fracture spacing and aperture, dip angle, fracture density along depth, and relative rock strength) of the rocks in the low/intermediate level radioactive waste repository site located in the coastal area of the East Sea are analyzed by the impact of the Gyeongju and Pohang earthquakes using acoustic televiewer data taken from the boreholes at the radioactive waste repository site in 2005 and 2018. As a result of acoustic televiewer logging analysis, the fracture numbers, fracture aperture, and fracture density along depth overall increased in 2018 comparing to those in 2005. This increase tendency may be due to changes in the fracture system due to the impact of the earthquakes, or due to weathering of the wall of the boreholes for a long period longer than 10 years after the installation of the boreholes in 2005. In the borehole KB-14, on the whole, the orientation of the fractures and the average fracture spacing are slightly different between 2005 and 2018, while dip angle and relative rock strength in 2005 and 2018 are similar each other.