• Title/Summary/Keyword: 경사방향

검색결과 1,084건 처리시간 0.027초

Research on the Necessity of Building the Second Space Rocket Launching Sites for Breakthrough Development of R.O.K National Space Power (도약적 국가 우주력 발전을 선도할 제2 우주센터 구축 필요성 연구)

  • Park, Ki-tae
    • Journal of Space Technology and Applications
    • /
    • 제2권2호
    • /
    • pp.146-168
    • /
    • 2022
  • Witnessing current military conflicts in South China Sea and Eastern Europe, most defense analysts evaluate one of the most serious security threat toward the US is coming from the superpower competitions with Russia and China. The main means for such super power hegemonic competitions is military power and space power is a key enabler to maximize the efficiency and effectiveness of military employment. Reflecting above circumstances, the space hegemonic competition between the Unites States and China is spreading into all aspects of national powers. Under such an environment, R.O.K needs to significantly develop national space power to preserve life and assets of people in space. On the other hand, the R.O.K has a lot of limitations in launching space assets into orbits by land-based space rockets due to its geographic locations. The limitation of rocket launching direction, the failure to secure a significant area enough to secure safety and the limitation to secure open area enough to build associated facilities are among them. On this paper, I will suggest the need to build the 2nd space rocket launching site after analyzing a lot of short-falls the current 'Naro' space center face, compared to those of advanced space powers around the world.

Estimation of the Hydrological Design Frequency of Local Rivers Using Bayesian Inference and a Sensitivity Analysis of Evaluation Factors (평가인자 가중치에 대한 베이지안 추론과 민감도 분석을 통한 적정 하천설계빈도 결정)

  • Ryu, Jae Hee;Kim, Ji Eun;Lee, Jin-Young;Park, Kyung-Woon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제42권5호
    • /
    • pp.617-626
    • /
    • 2022
  • In Korea, annual precipitation and its variability have gradually increased since modern meteorological observations began, and the risk of disasters has also been increasing due to significant regional variations and recent abnormal climate conditions. Given that damage from storms and floods mainly occurs around rivers, it is crucial to determine the appropriate design frequency for river-related projects. This study examined existing design practices used to determine hydrological design frequencies and suggested a new method to determine appropriate design frequencies. The study collected available data pertaining to seven evaluation factors, specifically the basin areas, shape parameters, channel slopes, stream orders, backwater effect reaches, extreme rainfall frequencies, and urbanized flood inundation areasfor 413 local rivers in Chungcheongnam-do in Korea. The estimated weights for areas of extreme rainfall frequencies and urbanized flood inundation were found to be 18, having a great effect on determining the design frequency. Compared with the established design frequency in previous government reports, the estimated design frequency increased for 255 rivers and decreased for 158 rivers.

Analysis of Built and Walking Environment for Coastal Ferry Terminal using IPA -Focusing on Yeosu Coastal Ferry Terminal- (IPA를 이용한 연안여객터미널의 시설 및 보행특성 분석 -여수연안여객터미널을 중심으로-)

  • Song, Tea-Han;Kim, Hwa-Young
    • Journal of Korea Port Economic Association
    • /
    • 제37권3호
    • /
    • pp.93-104
    • /
    • 2021
  • A coastal ferries, which serve as a mode between mainland and offshore islands, are frequently used by islanders and travelers visiting islands. Therefore, it is located in a place with good accessibility to the downtown so that users can use it conveniently. However, research on the built environment and walking environment of coastal ferry terminals has not been conducted to ensure that elderly islanders and general travelers can use comfortably the coastal ferry terminal. In this study, with a focus on the coastal ferry terminal space, the walking section was set as 1)the accessibility of the coastal ferry terminal, 2)the built environment for using the coastal ferry terminal, and 3)walking environment in the ferry boarding and disembarkation at the coastal ferry terminal, and 4, 5)walking environment in the ferry. An evaluation tool was developed to measure the walking environment for each walking section, and the importance and satisfaction of users were analyzed using the IPA for the Yeosu Coastal Ferry Terminal. As a result, in the process of approaching the ferry terminal, 'convenience of using public transportation by foot' and 'convenience of using signposts guiding the location and direction of the ferry terminal' were investigated as concentrated areas. On the other hand, the built environment inside the ferry terminal and the walking environment showed that the satisfaction of the users was high. Regarding the walking environment from the ferry terminal to the ferry, the 'surface walking environment of the walking path', 'convenience of walking with luggage', 'convenience of walking in the slope section', and 'convenience of walking in the ferry ramp section' showed low satisfaction. This study can be used as basic data for improving the facilities and walking environment of Yeosu Coastal Ferry Terminal and is expected to be used as data for comparative research with other coastal ferry terminals.

Makeup transfer by applying a loss function based on facial segmentation combining edge with color information (에지와 컬러 정보를 결합한 안면 분할 기반의 손실 함수를 적용한 메이크업 변환)

  • Lim, So-hyun;Chun, Jun-chul
    • Journal of Internet Computing and Services
    • /
    • 제23권4호
    • /
    • pp.35-43
    • /
    • 2022
  • Makeup is the most common way to improve a person's appearance. However, since makeup styles are very diverse, there are many time and cost problems for an individual to apply makeup directly to himself/herself.. Accordingly, the need for makeup automation is increasing. Makeup transfer is being studied for makeup automation. Makeup transfer is a field of applying makeup style to a face image without makeup. Makeup transfer can be divided into a traditional image processing-based method and a deep learning-based method. In particular, in deep learning-based methods, many studies based on Generative Adversarial Networks have been performed. However, both methods have disadvantages in that the resulting image is unnatural, the result of makeup conversion is not clear, and it is smeared or heavily influenced by the makeup style face image. In order to express the clear boundary of makeup and to alleviate the influence of makeup style facial images, this study divides the makeup area and calculates the loss function using HoG (Histogram of Gradient). HoG is a method of extracting image features through the size and directionality of edges present in the image. Through this, we propose a makeup transfer network that performs robust learning on edges.By comparing the image generated through the proposed model with the image generated through BeautyGAN used as the base model, it was confirmed that the performance of the model proposed in this study was superior, and the method of using facial information that can be additionally presented as a future study.

Evaluation of Steep Slopes Adjacent to Multi-use Facilities in National Parks using GIS (GIS를 활용한 국립공원 다중이용시설 인접 급경사지 평가)

  • Lee, Dong Hyeok;Jun, Kye Won;Jung, Min Jin;Park, Jun Hyo
    • Journal of Korean Society of Disaster and Security
    • /
    • 제14권4호
    • /
    • pp.29-36
    • /
    • 2021
  • Recently, due to climate change, the slope is increasing, and the risk of steep slope disasters such as the occurrence of slope collapse in the east coast and Busan region in 2019 and the Gokseong landslide in 2020 is increasing. Particularly, most national parks are made up of mountainous areas, and the risk of disasters on steep slopes is increasing. As the ground of the national park is aging and the weathering and jointing of the bedrock are accelerating due to climate change, the slope collapse and rockfall are increasing, and the annual number of visitors is increasing, it is necessary to manage steep slopes adjacent to multi-use facilities with many users. In this study, dangerous steep slopes that affect multi-use facilities in national parks were analyzed using GIS and verified through field surveys. As a process for extracting steep slopes adjacent to multi-use facilities in national parks, the slope was made in DEM and slopes of 34 degrees or higher were extracted. The difference between the maximum and minimum heights of the extracted slopes was used to confirm that the slopes met the standard for steep slopes, and the analysis of the slope direction was used to confirm whether it had an effect on the multi-use facilities. After that, precision aerial images and field photos were analyzed to finally identify risks at 4 sites, and field surveys were conducted. As a result of the field survey, all 4 sites were found to be steep slopes, 3 were graded D and 1 was graded C, so it was confirmed that management was required as a risk of collapse. All steep slopes extracted through GIS were found to be dangerous, so it is judged that the extraction of steep slopes through GIS would be appropriate.

Analysis and Evaluation of CPC / COLSS Related Test Result During YGN 3 Initial Startup (영광 3호기 초기 시운전 동안 CPC / COLSS 관련시험 결과 분석 및 평가)

  • Chi, S.G.;Yu, S.S.;In, W.K.;Auh, G.S.;Doo, J.Y.;Kim, D.K.
    • Nuclear Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.877-887
    • /
    • 1995
  • YGN 3 is the first nuclear power plant to use the Core Protection Calculator (CPC) as the core protection system and the Core Operating Limit Supervisory System (COLSS) as the core monitor-ing system in Korea. The CPC is designed to provide on-line calculations of Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD) and to initiate reactor trip if the core conditions exceed the DNBR or LPD design limit. The COLSS is designed to assist the operator in implementing the Limiting Conditions for Operation (LCOs) in Technical Specifications for DNBR/Linear Heat Rate (LHR) margin, azimuthal tilt, and axial shape index and to provide alarm when the LCOs are reached. During YGN 3 initial startup testing, extensive CPC/COLSS related tests ore peformed to ver-ify the CPC/COLSS performance and to obtain optimum CPC/COLSS calibration constants at var, -ious core conditions. Most of test results met their specific acceptance criteria. In the case of missing the acceptance criteria, the test results ore analyzed, evaluated, and justified. Through the analysis and evaluation of each of the CPC/COLSS related test results, it can be concluded that the CPC/COLSS are successfully Implemented as designed at YGN 3.

  • PDF

Analysis of Failure Behavior of Piles Embedded in Liquefied Soil Deposits (액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Cho, Chong-Suck;Han, Jin-Tae;Hwang, Jae-Ik;Park, Young-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • 제22권11호
    • /
    • pp.123-131
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. Several cases of pile failures were reported despite the fact that a large margin of safety factor was employed in their design. In this study, 1-g shaking table tests were performed in order to analyze the failure behavior of piles embedded in liquefied soil deposits by buckling instability. As a result, it can be concluded that the pile subjected to excessive axial loads $(near\;P_{cr})$ can fail easily by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, it was found that lateral loading due to lateral spreading increased lateral deflection of pile and reduced the buckling load. In addition, from the buckling shape of pile, difference between Euler's buckling and pile buckling vat observed. In the case of pile buckling, hinge formed at the middle point of the pile, not at the bottom. And in sloping grounds, location of hinge formation got lower compared with level ground because of the soil movements.

Analysis on the Rainfall Driven Slope Failure Adjacent to a Railway : Flume Tests (강우로 인한 철도 연변사면의 활동분석 : 실내모형실험)

  • SaGong Myung;Kim Min-Seok;Kim Soo-Sam;Lee In-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • 제22권5호
    • /
    • pp.83-91
    • /
    • 2006
  • Recently, the intensive rainstorm possibly induced by global warming plays a key role on the instability of railway adjacent slopes. The instability of slopes results as covering and loss of railway lines induced by slided soil mass. According to the site investigation on the failed slopes triggered by rainfall, low types of slope failure were observed: shallow, intermediate, gully erosion, and soil-rock interface failures. The observation reveals the different characteristics of slope failure depending on the thickness of soil layer, morphological features of slope, etc. Based upon the observations, flume tests were conducted to analyze the sliding mechanism of each failure. The variables of flume test are soil layer thickness, rainfall intensity, and morphology of slope under the constant condition of the percentage of fine, initial soil moisture content, slope angle and compaction energy. Test results show that shallow failure was mostly observed from the surface of the slope and caused by the soil erosion; in addition, compared to the other types of failure, the occurrence of initial erosion is late, however, the development of erosion is fast. In gully erosion failure, the collected water from the water catchment area helps erosion of the upper soil layer and transfer of residual corestone, which impedes the erosion process once the upper soil layers are eroded and corestone are exposed. The soil-rock interface failure shows the most fast initial erosion process among the failure types. Interestingly, the common feature observed from the different types of failure was the occurrence of the initial deformation near the toe of slopes which implies the existence of surbsurface flow along the downslope direction.

A Study on Correlation Analysis between Inventory Data and Danger Grade of Cut Slopes: Cut Slopes in Kangwondo and Chungcheongdo. (절토사면 현황조사 자료와 위험도간의 상관분석에 관한 연구: 강원도, 충청도 일대 절토사면)

  • Kim, Jin-Hwan;Lee, Jeong-Yeob;Kim, Seung-Hyun;Koo, Ho-Bon
    • Journal of the Korean Geotechnical Society
    • /
    • 제25권12호
    • /
    • pp.27-35
    • /
    • 2009
  • KICT (Korea Institute of Construction and Technology) and KISTEC (Korea Infrastructure Safety and Technology Corporation) have been carrying out inventory survey on cut slopes along national roads since 2006. Unlike precision safety check, cut slope inventory survey is a simple check about cut slope's characteristics with the naked eye to collect the data base of slope maintenance. Inventory survey is classified into general status, cut slope characteristics and inspector opinions. The inventory data are analyzed to identify dangerous slopes and decide a safety ranking. In this paper, we performed a correlation analysis using SPSS (ver.15) about the 10,461 cut slope inventory data which are collected in Kangwondo and Chungcheongdo from 2006 to 2008. We calculated the correlation coefficient between cut slope inventory data and the danger score derived from the data. And we evaluated cut slope inventory data which have the more influence on the danger degree of cut slope. According to results of correlation analysis, we found that inventory data influencing cut slope danger degree are stuck and fallen rock, orientation of discontinuity and angle of upper slope. And these data are slightly different by regionally. Later on, if inventory research is finished, we will understand regional characteristics of cut slopes.

A SVR Based-Pseudo Modified Einstein Procedure Incorporating H-ADCP Model for Real-Time Total Sediment Discharge Monitoring (실시간 총유사량 모니터링을 위한 H-ADCP 연계 수정 아인슈타인 방법의 의사 SVR 모형)

  • Noh, Hyoseob;Son, Geunsoo;Kim, Dongsu;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제43권3호
    • /
    • pp.321-335
    • /
    • 2023
  • Monitoring sediment loads in natural rivers is the key process in river engineering, but it is costly and dangerous. In practice, suspended loads are directly measured, and total loads, which is a summation of suspended loads and bed loads, are estimated. This study proposes a real-time sediment discharge monitoring system using the horizontal acoustic Doppler current profiler (H-ADCP) and support vector regression (SVR). The proposed system is comprised of the SVR model for suspended sediment concentration (SVR-SSC) and for total loads (SVR-QTL), respectively. SVR-SSC estimates SSC and SVR-QTL mimics the modified Einstein procedure. The grid search with K-fold cross validation (Grid-CV) and the recursive feature elimination (RFE) were employed to determine SVR's hyperparameters and input variables. The two SVR models showed reasonable cross-validation scores (R2) with 0.885 (SVR-SSC) and 0.860 (SVR-QTL). During the time-series sediment load monitoring period, we successfully detected various sediment transport phenomena in natural streams, such as hysteresis loops and sensitive sediment fluctuations. The newly proposed sediment monitoring system depends only on the gauged features by H-ADCP without additional assumptions in hydraulic variables (e.g., friction slope and suspended sediment size distribution). This method can be applied to any ADCP-installed discharge monitoring station economically and is expected to enhance temporal resolution in sediment monitoring.