• Title/Summary/Keyword: 경사계산 알고리즘

Search Result 68, Processing Time 0.024 seconds

Hierarchical Particle Swarm Optimization for Multi UAV Waypoints Planning Under Various Threats (다양한 위협 하에서 복수 무인기의 경로점 계획을 위한 계층적 입자 군집 최적화)

  • Chung, Wonmo;Kim, Myunggun;Lee, Sanha;Lee, Sang-Pill;Park, Chun-Shin;Son, Hungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.385-391
    • /
    • 2022
  • This paper presents to develop a path planning algorithm combining gradient descent-based path planning (GBPP) and particle swarm optimization (PSO) for considering prohibited flight areas, terrain information, and characteristics of fixed-wing unmmaned aerial vehicle (UAV) in 3D space. Path can be generated fast using GBPP, but it is often happened that an unsafe path can be generated by converging to a local minimum depending on the initial path. Bio-inspired swarm intelligence algorithms, such as Genetic algorithm (GA) and PSO, can avoid the local minima problem by sampling several paths. However, if the number of optimal variable increases due to an increase in the number of UAVs and waypoints, it requires heavy computation time and efforts due to increasing the number of particles accordingly. To solve the disadvantages of the two algorithms, hierarchical path planning algorithm associated with hierarchical particle swarm optimization (HPSO) is developed by defining the initial path, which is the input of GBPP, as two variables including particles variables. Feasibility of the proposed algorithm is verified by software-in-the-loop simulation (SILS) of flight control computer (FCC) for UAVs.

A Method for the Increasing Efficiency of the Watershed Based Image Segmentation using Haar Wavelet Transform (Haar 웨이블릿 변환을 사용한 Watershed 기반 영상 분할의 효율성 증대를 위한 기법)

  • 김종배;김항준
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • This paper presents an efficient method for image segmentation based on a multiresolution application of a wavelet transform and watershed segmentation algorithm. The procedure toward complete segmentation consists of four steps: pyramid representation, image segmentation, region merging and region projection. First, pyramid representation creates multiresolution images using a wavelet transform. Second, image segmentation segments the lowest-resolution image of the pyramid using a watershed segmentation algorithm. Third, region merging merges the segmented regions using the third-order moment values of the wavelet coefficients. Finally, the segmented low-resolution image with label is projected into a full-resolution image (original image) by inverse wavelet transform. Experimental results of the presented method can be applied to the segmentation of noise or degraded images as well as reduce over-segmentation.

Design of a Multilayer Radar Absorbing Structure Based on Particle Swarm Optimization Algorithm (입자 군집 최적화(PSO) 알고리즘 기반 다층 레이더 흡수 구조체 설계)

  • Choi, Young-Doo;Han, Min-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.367-379
    • /
    • 2022
  • In this paper, a multilayer radar absorbing structure was designed using the Particle Swarm Optimization (PSO) algorithm, and the characteristics of the multilayer radar absorbing structure were analyzed. It was shown that design values can be derived quickly and accurately by applying PSO to the design of a multilayer radar absorbing structure, and it is also shown that the optimal multilayer radar absorbing structure can be designed especially for an oblique incident. In addition, it was shown that the optimal value that meets the performance requirements can be determined even in a combination of various design parameters. It is presented through a comprehensive flowchart including the equations and detailed descriptions of all variables for each step. From the results of this paper, it is possible to omit complex and many calculations for designing a multilayer radar absorbing structure, and it is possible to use various composite materials. It can be utilized in the design and development of multilayer radar absorbing structures.

Study of CO2 Absorption in Forest by Airborn LiDAR Data (LiDAR 자료를 이용한 산림 CO2 흡수량 산출 연구)

  • Go, Sin Young;Park, Jung Gi;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.29-35
    • /
    • 2013
  • Generally, Calculation of carbon dioxide absorption in the forest area is calculated using the information of the forest, such as tree height and DBH(Diameter of Breast Height). Tree height and DBH of these are obtained using the remote sensing data such as imagery and information of local forest survey. However, Mixed forest with a high proportion of field survey to lower the accuracy of forest information. In this study, vertical structure of the tree were identified by applying region growing method based on the slope using LiDAR data and height and number of the tree were identified by applying extracting top of the tree algorithm. Through the vertex tree extraction algorithm to identify height of tree and the number of individuals, substitute this for the DBH relation formula which is drawn from data through field surveys. In this, a quantitative calculation of carbon dioxide absorption were able to calculate the basic data. Also, carbon dioxide absorption of three type trees were calculated and average per unit area of carbon dioxide absorption were able to estimate.

The Extraction of Soil Erosion Model Factors Using GSIS Spatial Analysis (GSIS 공간분석을 활용한 토양침식모형의 입력인자 추출에 관한 연구)

  • 이환주;김환기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2001
  • Soil erosion by outflow of water or rainfall has caused many environmental problems as declining agricultural productivity, damaging pasture and preventing flow of water. As the interest in environment is increasing lately, soil erosion is considered as a serious problem, whereas the systematic regulation and analysis for that have not established yet. This research shows the method of extracting factor entered model which expects soil erosion by GSIS. There are several erosion model such as ANSWER, WEPP, RUSLE. The research used RUSLE erosion model which could expect general soil erosion connected easily with GSIS data. RUSLE's input factors are composed of rainfall runoff factor(R). soil erodibility factor(K), slope length factor(L), slope steepness factor(S), cover management factor(C) and support practice factor(P). The general equation used to extract L, S factor on the RUSLE to be oriented for agricultural area has some limitation to apply whole watershed. So, on this study we used a revised empirical equation applicable to the watershed by grid on the GSIS. Also, we analyzed RUSLE factors by watershed being analyzed with watershed extraction algorithm. Then we could calculate the minimum, maximum. mean and standard deviation of RUSLE factors by watershed.

  • PDF

Development of a Prestack Generalized-Screen Migration Module for Vertical Transversely Isotropic Media (횡적등방성 매질에 적용 가능한 겹쌓기 전 Generalized-Screen 참반사 보정 모듈 개발)

  • Shin, Sungil;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.71-78
    • /
    • 2013
  • The one-way wave equation migration is much more computationally efficient comparing with reverse time migration and it can provide better image than the migration algorithm based on the ray theory. We have developed the prestack depth migration module adopting (GS) propagator designed for vertical transverse isotropic media. Since GS propagator considers the higher-order term by expanding the Taylor series of the vertical slowness in the thin slab of the phase-screen propagator, the GS migration can offer more correct image for the complex subsurface with large lateral velocity variation or steep dip. To verify the validity of the developed GS migration module, we analyzed the accuracy with the order of the GS propagator for VTI media (GSVTI propagator) and confirmed that the accuracy of the wavefield propagation with the wide angles increases as the order of the GS propagator increases. Using the synthetic seismic data, we compared the migration results obtained from the isotropic GS migration module with the anisotropic GS migration module. The results show that the anisotropic GS migration provides better images and the improvement is more evident on steeply dipping structures and in a strongly anisotropic medium.

Research Trend Analysis for Fault Detection Methods Using Machine Learning (머신러닝을 사용한 단층 탐지 기술 연구 동향 분석)

  • Bae, Wooram;Ha, Wansoo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • A fault is a geological structure that can be a migration path or a cap rock of hydrocarbon such as oil and gas, formed from source rock. The fault is one of the main targets of seismic exploration to find reservoirs in which hydrocarbon have accumulated. However, conventional fault detection methods using lateral discontinuity in seismic data such as semblance, coherence, variance, gradient magnitude and fault likelihood, have problem that professional interpreters have to invest lots of time and computational costs. Therefore, many researchers are conducting various studies to save computational costs and time for fault interpretation, and machine learning technologies attracted attention recently. Among various machine learning technologies, many researchers are conducting fault interpretation studies using the support vector machine, multi-layer perceptron, deep neural networks and convolutional neural networks algorithms. Especially, researchers use not only their own convolution networks but also proven networks in image processing to predict fault locations and fault information such as strike and dip. In this paper, by investigating and analyzing these studies, we found that the convolutional neural networks based on the U-Net from image processing is the most effective one for fault detection and interpretation. Further studies can expect better results from fault detection and interpretation using the convolutional neural networks along with transfer learning and data augmentation.

Mapping of the Righteous Tree Selection for a Given Site Using Digital Terrain Analysis on a Central Temperate Forest (수치지형해석(數値地形解析)에 의한 온대중부림(溫帶中部林)의 적지적수도(適地適樹圖) 작성(作成))

  • Kang, Young-Ho;Jeong, Jin-Hyun;Kim, Young-Kul;Park, Jae-Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.241-250
    • /
    • 1997
  • The study was conducted to make a map for selecting righteous tree species for each site by digital terrain analysis. We set an algorithmic value for each tree species' characteristics with distribution pattern analysis, and the soil types were digitized from data indicated on soil map. Mean altitude, slope, aspect and micro-topography were estimated from the digital map for each block which had been calculated by regression equations with altitude. The results obtained from the study could be summarized as follows 1. We could develope a method to select righteous tree species for a given site with concern of soil, forest condition and topographic factors on Muju-Gun in Chonbuk province(2,500ha) by the terrain analysis and multi-variate digital map with a personal computer. 2. The brown forest soils were major soil types for the study area, and 29 tree species were occurred with Pinus densiflora as a dominant species. The differences in site condition and soil properties resulted in site quality differences for each tree species. 3. We tried to figure out the accuracy of a basic program(DTM.BAS) enterprised for this study with comparing the mean altitude and aspect calculated from the topographic terrain analysis map and those from surveyed data. The differences between the values were less than 5% which could be accepted as a statistically allowable value for altitude, as well as the values for aspect showed no differences between both the mean altitude and aspect. The result may indicate that the program can be used further in efficiency. 4. From the righteous-site selection map, the 2nd group(R, $B_1$) took the largest area with 46% followed by non-forest area (L) with 23%, the 5th group with 7% and the 4th group with 5%, respectively. The other groups occupied less than 6%. 5. We suggested four types of management tools by silvicultural tree species with considering soil type and topographic conditions.

  • PDF